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ABSTRACT

This report is a synoptic investigation of the uses of frequency-stabilized lasers for scientific applica-

tions in space. It begins by summarizing properties of lasers, characterizing their frequency stability,

and describing limitations and techniques to achieve certain levels of frequency stability. Limits to

precision set by laser frequency stability for various kinds of measurements are investigated and

compared with other sources of error. These other sources include photon-counting statistics, scat-

tered laser light, fluctuations in laser power and intensity distribution across the beam, propagation

effects, mechanical and thermal noise, and radiation pressure. Methods are explored to improve

the sensitivity of laser-based interferometric and range-rate measurements. Several specific types of

science experiments that rely on highly precise measurements made with lasers are analyzed, and

anticipated errors and overall performance are discussed. Qualitative descriptions are given of a

number of other possible science applications involving frequency-stabilized lasers and related laser

technology in space, applications that will warrant more careful analyses as technology develops.
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EXECUTIVE SUMMARY

This report investigates aspects of frequency-stabilized lasers that are important for a variety of

scientific applications in space, and describes in detail several kinds of scientific measurements that

would use frequency-stabilized lasers and related technology. The much shorter wavelengths of lasers

relative to radio or microwave emitters (microns vs. centimeters and longer) offer the potential for

intrinsically finer resolution in measurements of angular position or distance. They also make laser

links to spacecraft virtually immune to the plasma propagation effects that plague radio-science

experiments in space and make dual-frequency radio links a necessity. Because of the much shorter

wavelength (higher energy) associated with each photon, quantum effects are more noticeable than

in centimeter-wavelength measurements. They are more noticeable even than thermal effects, since

the energy ht, of a single optical photon is substantially greater than the analogous single quantum

of thermal energy, kBT, at room temperatures. Thus, whereas at radio wavelengths the error in

measurements of phase or frequency typically is dominated by additive thermal noise, at optical

wavelengths it is dominated by photon-counting statistics - the random, Poisson-distributed arrival

times of the photons, an ultimate consequence of the quantum-mechanical nature of light and the

"zero-point fluctuations" of the vacuum electromagnetic field.

The beam from a laser/telescope transmitter is narrow: A/D _ 10 microradians (prad)

2 arcseconds for laser wavelength A = 1 micron (/_m) and telescope diameter D = 10 cm. Hence

laser transmitters and receivers both can be substantially smaller than their microwave counterparts.

The small size and lower mass offer practical advantages (such as eased launch constraints and more

efficient fuel usage), and the higher frequencies offer wider communication bandwidths and higher

data rates. These advantages are driving the present development of optical communication links

for near- and deep-space applications. The small antenna size also suggests an important benefit to

high-precision measurements involving range or range-rate measurements among orbiting spacecraft.

In such experiments, the spacecraft house test masses that are maintained as nearly as possible in



inertial-freeenvironments,surroundedbyvacuumchambers and isolated from external accelerations

of various origins, including mechanical, thermal, electrostatic, magnetic, and gravitational. This

isolation requires DISturbance COmpensation Systems (DISCOS, or drag-free systems) to sense

changing accelerations on the test masses and control mechanisms (e.g., spacecraft thrusters or

local electric fields) to compensate. In low Earth-orbit, bombardment by dust and gas molecules of

varying velocities and densities causes a root-mean-square (rms) acceleration or drag that depends

on the average density, the square of the spacecraft velocity, and the ratio of cross-sectional area

to mass of the spacecraft or antenna. The reduced drag afforded by compact laser antennas also

may make it possible to make measurements at lower orbit altitudes, where, for applications such

as gravity-mapping or remote sensing, the signals are stronger.

The frequency stability of a laser is characterized most conveniently as a fractional quantity

6v/v, the ratio of the frequency fluctuations (standard deviation) 6v to the nominal frequency v. In

the simplest measurement of a distance L made by monitoring the passage of cycles of a continuous-

wave laser signal, the fractional error 6L/L in the measurement will be at least as large as the

fractional fluctuations of the laser frequency:

6L _v
> --. (1)

L - ;/

Many scientific applications using laser interferometers in space, such as the detection of gravitational

waves, high-resolution measurements of anomalies in a planet's gravity field, or microarcsecond

astrometry, require extremely precise measurement of distances ranging from several centimeters

to millions of kilometers. Gravitational-wave detection imposes the most stringent demands on

measurement precision and accuracy, requiring a sensitivity to fractional length changes of 10 -20 or

smaller in order to detect the gravitational waves expected from a variety of sources. Fortunately,

eq. (1) is not the last word on the relation between the fractional frequency stability of a laser and

obtainable accuracy for measurement of displacements. In practice, the intrinsic fractional frequency



stabilitycanbeconsiderablyworsethanthedesiredsensitivityto displacements,6L/L, provided

that effects of the frequency fluctuations on the measurements can be calibrated adequately.

There are two general approaches to ease requirements on laser fractional frequency stability

for a given displacement measurement sensitivity. The first is to measure the displacement relative

to some other distance, e.g., using a dual-arm interferometric approach. Since measurement is made

of the relative change in length of two (or more) nominally equal arms of the interferometer, error

sources that are correlated in the two arms, such as phase or frequency fluctuations in the common

laser light that was split and sent down each arm, will cancel. For arm lengths held equal, say, to

0.1%, measurement error due to laser phase fluctuations also will cancel to 0.1%, and the requirement

on laser fractional frequency stability given by eq. (1) will be eased by three orders of magnitude. If

the desired measurement sensitivity still leaves the demands on laser frequency stability too high, it

may also ,be possible, with a dual-arm interferometer, to calibrate the laser phase fluctuations and

remove them during postprocessing of the data. Such a scheme has been proposed for the highly

demanding space-based interferometric detection of low-frequency gravitational waves. It requires

frequent sampling (multiple measurements over the round-trip light-travel time in each arm of the

interferometer) in order to infer the Fourier components of the laser fluctuations from the spectra

of the measured phase shifts. Given sufficient received coherent power, this approach can be used

to reduce the measurement error caused by laser phase fluctuations sufficiently that it is no longer

the dominant error.

One of the ultimate limiting sources of measurement error arises from photon-counting statistics,

or the quantum-mechanical uncertainty principle that says that the accuracy with which the phase

of a coherent light source can be measured scales inversely with the accuracy with which one can

count the number of photons that have arrived at a detector in a given integration time. Lasers that

are not amplitude-stabilized by feedback, no matter how stable in frequency, at best emit "coherent-

state" light, consisting of photons whose arrival times at a detector are random and follow a Poisson



distribution;this randomness is a consequence of the quantum-mechanical zero-point fluctuations

of the vacuum electromagnetic field. The resulting photocount statistics have the well-known

standard deviation, where N is the mean photocount. The photon-statistics limit to the fractional

error 8L/L in a length measurement made with a laser wavelength A is

6L/L- 4rLV_ (2)

,q

I

For example, for a laser interferometer with a 100-km baseline, a 60-watt laser operating at A = 1 tim,

and an overall optics and detector efficiency of 2%, photon statistics would ]imit measurement

sensitivity to 10-15 m in a 1-millisecond (ms) integration time. This would give a strain sensitivity

of 10 -2°, which still may be too poor for regular ground-based detection of gravitational waves. In

astrometry, the limiting power comes not from a laser source, but from the brightness of the stars

being observed. For a 10th-magnitude star observed at visible frequencies with 1-m apertures in

a laser interferometer with a 10-m baseline and 2% overall efficiency (input starlight to detected

photocount), photon statistics limit the angular precision to about 0.3 microarcsecond. Realization

of such accuracy would require control of systematic errors and instrument geometry to about

10 picometers (pm). Recall from the discussion above that if a laser metrology system is used

to accomplish this in an arrangement that provides common-mode cancellation of laser frequency

fluctuations to 0.1%, the laser would have to be stable to about one part in 109, which is well within

the reach of currently available technology.

When other sources of error (discussed below) are small enough that photon statistics dominate,

there are techniques that can be used to increase the effective received coherent power and thus drive

down even this error source. One of these is "power recycling," a technique likely to be important

in ground-based laser-interferometric detectors of gravitational waves. Laser light that normally

would exit the interferometer and be lost is recaptured and redirected coherently back into the

interferometer. In this way the laser light circulating in the interferometer is built up to a level much



higherthantheoriginalinputpower,beforeameasurementof therelative phase shift is made. The

success of this technique is limited ultimately by light losses (e.g., imperfectly reflecting end mirrors).

For very long baselines, the diffractive spreading of the light beam can produce an unacceptably weak

signal at the measurement point. In this situation, the use of coherent laser transponders instead

of retroreflectors is required; the corresponding diffractive losses scale as 1/L 2 rather than 1/L 4.

Transponders would be required for space-based laser-interferometric detection of low-frequency

(10 -5 to 1 Hz) gravitational waves, and for high-resolution gravity-mapping (50 km spatial scales,

10-6g gravity anomalies) of planets using laser interferometers aboard orbiting spacecraft.

Another kind of recycling technique, called "resonant recycling" or "resonating," can be used

to increase the effective interferometer baseline and so increase the signal (phase shift) caused by a

given relative displacement between two arms of an interferometer. Here the entire interferometer

is made into a resonant cavity, and the laser light is allowed to resonate back and forth from arm to

arm, thus building up a stronger phase shift between the two oppositely traveling light beams before

they are recombined. Integration times may be limited ultimately by sign changes in the force being

monitored, as is the case for detection of gravitational waves. In practice, more commonly it is light

losses that limit the usefulness of these recycling techniques.

The presence of laser frequency fluctuations can make scattered light a difficult problem for

precision interferometric measurements. The amount by which the phase of the main beam is

changed due to the presence of scattered light scales with the square root of the ratio of power in

the scattered light to power in the main beam and with the phase delay between the main and the

scattered beam. This phase delay fluctuates as the laser frequency fluctuates. Furthermore, this

error does not cancel in a dual-arm interferometer. One method of alleviating this involves deliberate

phase modulation of the laser light, so that the phase delays tend to cancel when averaged over

integral multiples of the modulation period. For best results, the modulation must be performed

over a range of frequencies, tailored to suppress the dominant components of scattered light.



Fluctuations in laser power and in the spatial intensity distribution across the beam need

not constitute a fundamental obstacle to measurement sensitivity. For most applications, they

can be controlled adequately by feedback and mode-cleaning techniques. However, nanoradian

(milliarcsecond) pointing accuracy is required for some applications. Radiation pressure from the

randomly arriving laser photons typically is a negligible effect. But, unlike photon-statistics error,

this effect produces a length-measurement error that grows, rather than decreases, with the square

root of the integrated number of photons (laser power times integration time); hence it does preclude

extending integration times arbitrarily in an effort to reduce the photon-statistics error. When laser

power is high enough to make the radiation-pressure and photon-statistics errors comparable, the

resulting limit to sensitivity is known as the "standard quantum limit" for detection of changes in

the position of a free mass. Techniques for achieving sensitivities better than the standard quantum

limit have been explored, but have not been implemented yet in practice.

Medium-induced phase noise (e.g., refractive-index fluctuations) can be suppressed in some

cases by using a dual-arm interferometer, although applications as demanding as gravitational-wave

detection from the ground still require vacuums as good as 10 -8 or 10 -9 tort. The immunity of

optical wavelengths to plasma-induced phase scintillation is an advantage for space applications

in which ionospheric plasma effects otherwise would contribute unacceptable noise; lasers also can

be used in conjunction with microwave transmitters to calibrate plasma effects and study plasma

properties. Mechanical and thermal noise can constitute serious sources of systematic error and

typically require the use of very stable materials, careful temperature control, and isolation from

local accelerations. On Earth, local accelerations due to seismic noise and gravity gradients become

increasingly significant at lower frequencies, so much so that Earth-based detection of gravitational

waves at frequencies below about 10 Hz is deemed impossible. In space, active disturbance compen-

sation systems are required to counteract fluctuating accelerations that arise from such effects as

atmospheric drag, thermal and gravity gradients, and fluctuating radiation pressure from variations



in solarflux intensity.

Themostdemandingscientificapplicationof frequency-stabilizedlasertechnologybeingpur-

suedcurrentlyisthedetectionoflow-frequencygravitationalwaves(below10Hz), which by necessity

must be done from space (Earth or solar orbit). Emitters of gravitational waves can be categorized

as periodic sources, burst (or pulse) sources, and stochastic sources. Compact binary stars, su-

pernovae, and individual compact objects are expected to be the most easily observed objects,

producing dimensionless strains in an Earth-vicinity dual-arm interferometer that might be on the

order of 10 -2°. The appropriate measurement frequencies for these sources range from millihertz

for periodic binaries to kilohertz for the millisecond bursts expected from collapsing objects. The

advantages of space-based over ground-based laser interferometers in the low-frequency regime are

(1) freedom from terrestrial gravity gradients and mechanical noise, thus enabling observations down

to frequencies as low as 10 -5 Hz or measurement time scales on the order of a day; (2) the potential

for very long baselines -- millions of kilometers with free-flying spacecraft; and (3) the ability to

support test masses in a nearly inertial manner.

For the long baselines associated with space-based detection of low-frequency gravitational

waves, laser transponders provide a critical advantage over retroreflectors. To achieve comparable

measurement sensitivity limited by photon statistics, the laser power required with retroreflectors

must be larger than that required with transponders by the ratio (LA/DADB) 2, where L is the

baseline and DA and DB are the diameters of the apertures at each end of the link (transmit

and receive aperture diameters at each station are assumed identical for this discussion). This

ratio is --, 10 s for a 10-million-km baseline and 1-m apertures (A = 1 pm)[ Relative phase shifts

corresponding to optical path-length changes as small as 10 pm over these long baselines must be

monitored in order to reach strain sensitivities of 10 -21 . Distances among free-flying spacecraft

might be held equal to the 0.1% level, but active calibration of laser phase fluctuations still will be

necessary. The drag-free technology needed to control or compensate for fluctuating accelerations



posesa significantchallenge.It is estimated that the accelerations felt by the test masses in the

spacecraft must be held to a level of lO-lSg or smaller. In addition to thermal and gravity gradients

affecting the spacecraft, accelerations are caused by electrostatic forces (charge buildup from cosmic-

ray impacts, for example) and random impacts of residual gas molecules on the test masses. The

relative significances of these error sources depend on the measurement time scale. Photon statistics

enforce a spectrally flat floor to measurement sensitivity on time scales of about 10 seconds to 10

minutes. Bombardment by residual gas molecules causes a fairly sharp decrease in sensitivity for

time scales longer than about 10 minutes, and thermal gradients cause an even sharper decrease for

time scales longer than about a day.

Another intriguing possible application of space-based laser interferometers is high-resolution

mapping of planetary gravity fields. Short-wavelength spatial variations in the local gravity field

and related undulations of the geoid could be mapped by monitoring changes in the range and range

rate between spacecraft placed one behind another in a common polar orbit. A microwave version of

this was proposed several years ago as the Geopotential Research Mission. Its best spatial resolution

would have been a few hundred kilometers, and it would have been sensitive to gravity anomalies as

small as 10-6g, or about 1 milligal (regal). A laser version using coherent laser transponders rather

than retrorefleetors could provide spatial resolutions of 50 kilometers with similar sensitivity. The

range-rate measurement accuracy _ required for sensing gravity anomalies depends on the desired

spatial resolution At/2 (At is the spatial wavelength in a harmonic expansion of the gravity field), the

orbit altitude h, the total number Nm of identical, independent measurements, and the along-track

separation L between spacecraft in the following way:

a_ o( N,_ 1/_ ,_312 e-2,_hl_ [sin_rL/Ar[. (3)

The maximum signal, hence the minimum requirement on range-rate accuracy, occurs for spacecraft

separations L approximately equal to the desired spatial resolution At�2. For measurement of a

8



1-mgalanomalyon Earthwith 106independentmeasurementsat anorbit altitudeof 160km,

range-ratemeasurementaccuraciesof approximately50nm/swouldberequiredto achieve50-km

spatialresolutionand0.8pm/s for 25-kmresolution.Thedemandon range-ratemeasurement

accuracyeasesdramaticallyforspatialresolutionpoorerthanabout75kin,or abouthalftheorbit

altitude.Forexample,ingoingfrom50-kmresolutionto 100-kmresolution,therange-rateaccuracy

requirementisrelievedbyafactorof about500-- from50nm/sto 25pm/sec.

To achieve a resolution better than about 100 km with an orbiting laser-interferometer gravity

mapper, the dominant technology challenges are the drag-free system and the laser frequency stabil-

ity. At an orbit altitude of about 160 kin, the kinds of measurements described here would require

disturbance compensation systems on the spacecraft capable of compensating for accelerations felt

by measurement test masses down to about 10-13g. Technology for this has been proven, and de-

velopment is in progress to improve performance by several orders of magnitude, motivated by the

orders-of-magnitude more stringent drag-free requirements associated with space-based detection

of low-frequency gravitational waves. For mapping gravity fields, a better drag-free system would

permit a lower orbit altitude, hence stronger signals and improved sensitivity and spatial resolution.

Recall that in the detection of low-frequency gravitational waves, the requirements on laser

frequency stability can be eased by making measurements frequently enough to calibrate the laser

phase fluctuations. That approach cannot be used easily for this application because of the much

smaller spacecraft separations (--_ 100 km instead of l0 T km). However, frequency-stability require-

ments could be eased by placing three, rather than two, spacecraft collinearly in the same orbit. If

their separations were held equal to 0.1%, the resulting cancellation of laser frequency noise could

ease the stability requirements by roughly three orders of magnitude. With two spacecraft whose

separation is optimized for the desired spatial resolution, the laser fractional frequency stability (as-

suming one-second measurement integration times) would have to be at least as good as 5 x 10 -12 to

achieve 100-km spatial resolution, approximately 8 x 10 -13 for 50-km resolution and 2.5 x 10 -1_ for



25-kin resolution; the requirement continues to tighten sharply for better resolutions. Longer mea-

surement integration times could ease these requirements somewhat, but not significantly. The use

of three, rather than two, spacecraft for this application thus would provide considerable advantages

and potential for high-resolution mapping.

Important areas of application that require coherent laser links but which do not make interfero-

metric measurements of the sort described thus far are atmospheric lidar and scattering experiments.

These experiments measure range and range rate from backscattered, Doppler-shifted laser signals.

To be useful for weather forecasting, lidar measurements in Earth's atmosphere need range-rate

measurement accuracies of 1 to 5 m/s and a vertical range resolution of about 1 kin. Achievable

range-rate accuracy av is limited by the laser pulse spectral width to a value o'v,bw , by the spread

of particle velocities in the scattering medium to O'v,med, and by photon statistics to _.,ph- For

a Gaussian pulse of spectral width 6vp _ 0.3 MHz [duration 1-p =- (21rSvp) -1 __ 0.5 ps at 1-pro

wavelength], these accuracy limits are

a,_,bw _ 0.15 m/s ;

O'v,me d _" 0.25 m/s \_-_ _/s] ;

crv,ph--_ 0.08 m/s (N_) 1/'

(4)

Here amed is the rms velocity spread in the scattering medium, and Nd is the number of detected

photons. The range resolution aL for a 0.5-ps pulse (when the "range gate" is set equal to the pulse

width vp) is on the order of 75 m (= ev_/2) or larger. These values for range-rate accuracy and range

resolution could be met with laser fractional frequency stabilities in the range 10 -1° to 10 -9. Better

stabilities for the reference laser used to generate the pulses could improve range-rate measurement

accuracy by producing spectrally narrower pulses, but this improvement would be limited in practice

by the maximum pulse duration set by the desired range resolution.
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Anotherspace-related scientific application that would use coherent laser links is occulta-

tion experiments in planetary (or satellite) atmospheres and in ring systems around giant planets.

Atmosphere-occultation experiments attempt to measure refractivity profiles, which ultimately are

used to estimate temperature and pressure as functions of height above the surface. Temperature

measurements with errors smaller than 1% would require laser frequency stabilities ranging from

10 -11 for Venus to 10 -13 for Jupiter. Knowledge of the local vertical to a few microradians is also

needed; this can be difficult to achieve for the giant planets because of differential motions in their

atmospheres. Pointing the laser beam also may pose a challenge where atmospheric bending angles

are large, as at Venus.

Ring-occultation experiments would use coherent laser links to measure the extinction and scat-

tering from ring particles. Measurements of opacity and of the coherent phase shift caused by dif-

ferential refraction can be used to solve for the column density and size distribution of ring particles

whose sizes are comparable to or smaller than the laser wavelength. Information about the distri-

bution of particles larger than the transmitter antenna (telescope) can be obtained from Doppler

maps of the incoherently forward-scattered signal. To enable measurement of the coherent phase

shift of laser light passing through ring structures, the laser may have to have a fractional frequency

stability as good as 10 -is. But useful forward-scattering measurements of column density gradients

could be made with frequency stabilities on the order of 10 -11 . The Voyager radio-frequency experi-

ments at Saturn gave information about particles ranging in size from 1 mm (wavelength-dependent

extinction) to about 20 m (forward scattering). Similar experiments with lasers would provide

complementary information about particles ranging from submicron size (extinction) to meter-size

(forward scattering), and also would serve to verify information gained from radio measurements

for these size ranges. Since past microwave experiments suggest that most ring particles range in

size from centimeters to meters, the use of both laser and radio transmitters would be desirable for

obtaining maximum information about ring particles.
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Numerous other scientific applications of frequency-stabilized lasers and related technology ex-

ist, many of which use techniques similar or analogous to those discussed thus far. General mis-

sion enhancement will result from the use of coherent laser links for telemetry and navigation and

tracking. Laser communication links from space are capable of much higher data rates than radio-

frequency links, and coherent links would enable excellent performance even under conditions of

high background light, e.g., for missions near the Sun. Laser links to spacecraft can also be used

for accurate, real-time remote optical tracking and navigation through astrometric and coherent

Doppler measurements. Frequency-stabilized lasers also would enable a varietY of improvements to

onboard navigational capabilities and science instruments through the addition of sensitive tools

such as coherent lidar and laser-gyro rotation sensors, as well as higher data-rate capabilities.

Coherent laser links to and among spacecraft will enable a wide variety of solar-system sci-

ence experiments and astrophysical measurements. Ephemerides could be improved through remote

optical tracking of laser-carrying spacecraft. The combination of remote optical tracking and in

situ measurements among laser-carrying spacecraft offers the possibility of highly accurate measure-

ments of planet and satellite masses and gravity fields. When combined with topographic data

obtained with Earth-based photographic or radar data and perhaps augmented with lidar used on

orbiters or during fly-by missions, this gravity data can provide information about the interiors of

terrestrial planets, such as the degree of isostatic compensation, the radial temperature profile, and

elastic properties. For the giant planets, the gravity data could be used in conjunction with inde-

pendent information on rotation rate and radii to deduce the density distribution, put constraints

on composition, and constrain possible models of the interiors. Cometary masses could be deduced

by combining remote astrometric measurements made among the comet, spacecraft, and sun with

precise measurements of range and range-rate made with coherent lidar from the spacecraft to the

comet, and with onboard accelerometer measurements.

Studies of planetary atmospheres would benefit both from occultation experiments made with
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long-range coherent laser links (described above) and from in situ coherent lidar measurements.

Coherent laser scattering measurements would be particularly useful for cloud studies. Traditional

"physical sampling" measurements involve capture of particles on substrates or aspiration of particles

through insertion of instruments into the clouds. These provide highly local information only, they

disturb the airstream, and they are tedious and time-consuming. In contrast, laser light-scattering

measurements are efficient and nonintrusive. They would be applicable for particles in the I to

50 pm size range, which includes fog droplets (of order 1 pm) and cloud droplets (10 to 20 ttm).

Coherent Doppler lidar also could be used to measure trajectories and other properties of cos-

mic and interplanetary dust particles and to provide insight into their origins. It is not known

wbat fraction of the interplanetary dust particles comes from comets or asteroids, nor what fraction

is actually interstellar dust that has penetrated the solar system. Chemical or isotopic informa-

tion alone is inadequate to answer these questions because of the diversity of compositions among

comets. Trajectory information is essential to correlate physical characteristics with specific sources.

Conventional techniques to measure velocities of dust gains (such as those proposed for the space-

station-based Cosmic Dust Collection Facility) involve capture and destruction of individual grains

in order to measure their relative positions and times of flight between specified points. A coherent

pulsed Doppler lidar system, operating with 10-ps pulses of relatively narrow spectral width, say

30 kHz (requiring fractional frequency stabilities on the order of 10 -1° for the reference laser oscil-

lator, assuming an operating wavelength of 1 pm), could measure velocities of particles in the 1 to

10 pm size range with a precision of about 35 m/s, or about 0.2 to 0.4% of the estimated average

particle velocity. This presumes detector collecting areas on the order of 100 m 2 and integration

times of 5 to 10 minutes, consistent with estimated impact rates of about 1,000/m2-yr for particles

of this size.

Studies of the Sun itself -- its quadrupole moment and total angular momentum, its mass

moments, density distribution, shape and dimensions, surface composition, and luminosity, and
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propertiesof the solar wind and corona -- traditionally have been carried out with dual radio-

frequency links to spacecraft. Some of this information has been obtained through measurement

of the differential effect of the solar plasma on the group delay of beams at two radio wavelengths,

but much of it has relied on accurate tracking of the spacecraft as it passes within a few degrees

of the Sun. A coherent laser link to such a spacecraft would be free of plasma-induced noise in the

measurement of phase, and, when used in conjunction with precise astrometric tracking from Earth

or Earth-orbit, could enable greatly improved measurements of the solar gravity field, including

the magnitude and orientation of its quadrupole moment, d2. Such measurements would provide

information about rotation of the solar interior and lead to improved estimates of the solar mass

distribution and total angular momentum d. This information would impact current theories of star

and planet formation and also would enable sensitive solar-system tests of theories of gravitation.

With laser fractional frequency stabilities on the order of 3 x 10 -14 over several hours, or stable

line widths of about 10 Hz at 1-pm wavelengths, Doppler velocity-measurement accuracies of about

0.1 mm/s could be achieved for laser-carrying spacecraft near the Sun, provided active disturbance-

compensation systems were used to reduce stochastic accelerations on the spacecraft test mass to

about 10-1°g. (One-minute integrations were assumed for these estimates.) This tracking accuracy

would enable inference of J2 to an accuracy of about 2 x 10 -_, approximately 10% of its estimated

value and about five times better than it is known now.

Finally, frequency-stabilized laser technology will play a vital role in solar-system tests of the-

ories of gravitation, especially general relativity. The majority of such tests involve highly accurate

tracking of a spacecraft under high-background conditions, generally near the Sun. This would be

accomplished both with coherent laser links between Earth and laser-carrying spacecraft and with

Earth-orbiting optical astrometric interferometers, whose accuracy is enabled by laser metrology

systems employing frequency-stabilized lasers. Range-rate accuracies of 0.1 mm/s or better, ranging

accuracies of a few centimeters of better, and/or submilliarcsecond angular accuracies are needed for
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such tests to be significantly more conclusive than any made thus far. To achieve these performance

levels, spacecraft must have active disturbance-compensation systems to reduce nongravitational

accelerations to an effective level of 10-1°g or smaller over time scales on the order of a minute;

this is roughly five orders of magnitude smaller than the buffeting that would be experienced by a

solar-orbiting spacecraft due to fluctuations in the solar-wind intensity, for example. Alternatively,

planetary orbiters or -- still better -- landers should be used. Candidate tests include measurement

of the advance of the perihelion of Mercury (approximately 43 seconds of arc per century), which

depends critically on our knowledge of J2; measurement of the predicted time delay and deflection

of light rays passing near a massive body; and measurement of the gravitational redshift of light,

or, more generally, tests of the principle of equivalence. Measurements of the gravitational redshift

would benefit from sensitive Doppler measurements made with a coherent laser link to a spacecraft

near the Sun. Violations of the equivalence principle should also appear as measurable anomalies in

orbits of planets and satellites; such tests would benefit significantly from the use of coherent laser

transponders placed, for example, on the lunar surface.

The following table summarizes estimates of the fractional laser frequency stabilities _v/v re-

quired for several types of scientific applications in space, as derived and discussed in this report.

These estimates assume reasonable values for characteristics of the observing systems (as explained

in the text) and the best information available about the phenomena to be observed (e.g., expected

signal strengths). In general, the listed values are on the conservative side of the allowable ranges.

For interferometric astrometry, gravitational-wave detection, and mapping of Earth's gravity field,

it is assumed that dual-arm interferometer configurations or their equivalent are used, so that laser

frequency stability requirements are three orders of magnitude less severe than they would be in the

absence of any common-mode cancellation of errors due to laser frequency fluctuations. The last

column gives references to appropriate equations or discussions in the text.
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1. INTRODUCTION

1.1 Purpose of report

The development of coherent microwave technology -- stable radio-frequency sources such as the

hydrogen maser, S- and X-band coherent transponders suitable for use on satellites and planetary

spacecraft, and low-noise phase-sensitive receiver/amplifier/detector systems -- has been the basis

for many scientific and technical advances made during the last few decades. These advances have

occurred in such areas as Earth science and remote sensing, planetary exploration and solar-system

science, radio astronomy, and astrophysics. Coherent microwave technology also has contributed

significantly to advances in atomic and molecular physics and has provided means to test a variety

of predictions made by quantum physics and general relativity.

By comparison with microwave technology, the development of coherent laser technology at

optical and infrared wavelengths is in its infancy. Since the first observation of a laser (fluorescent

ruby) in 1960 (Maiman 1960), major advances have been made in understanding the lasing process

and properties of lasing media and in manipulating lasing media to exhibit optimal gain as well

as optimal spatial- and temporal-mode characteristics at desired wavelengths. Recent advances in

solid-state laser technology, including the use of diode lasers to pump specially prepared crystals and

techniques for controlling the temporal- and spatial-mode properties of the output light (Byer 1988;

Fan and Byer 1988), have brought laser technology to the point where it is a viable tool for some

sophisticated, hitherto impossible scientific measurements involving Earth-orbiting or interplanetary

spacecraft. These include detection of long-period (one second to one day) gravitational waves from

binary star systems and detection of gravitational pulses produced during the era of galaxy formation

from the collapse of massive (104 to 10s solar masses) stars to form black holes; high-resolution

mapping of planetary gravity fields with laser interferometers among coorbiting spacecraft (30 to

100 km resolution for Earth); light deflection and other sensitive tests of relativity and gravitation;
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measurementof thesolar quadrupole moment; and coherent-light-scattering experiments to probe

the short-wavelength structure, composition, and dynamics of planetary rings and atmospheres.

Science measurements such as these put differing demands on laser sources for power, spatial or

temporal coherence, reliability and lifetime, compactness, and ruggedness. Typically, they require

low-noise infrared or optical detectors that can perform near the limits imposed by quantum me-

chanics. But a primary reason these measurements have not been practical at optical or infrared

wavelengths is their stringent demand on laser frequency stability. Detection of low-frequency grav-

itational waves may be one of the most demanding in this regard, as it may require lasers with at

least one watt of power and fractional frequency stabilities of 10 -13 or better (< 30 Hz) over several

seconds to hours, operating autonomously on spacecraft that are coorbiting with Earth around the

sun. Another demanding application is high-resolution mapping of the Earth's gravity field, down

to scales of several tens of kilometers with sensitivities of 1 milligal (10-6g) for gravity anomalies

and 10 cm for geoid undulations. This could be accomplished with a laser interferometer between

two spacecraft in orbit together (one behind the other), but would require fractional frequency sta-

bilities as good as 10-14; three spacecraft forming a collinear dual-arm interferometer might ease

this requirement on laser frequency stability by several orders of magnitude. Other applications

might require only a few hundred milliwatts of power and stabilities of 10 -13 to 10 -l° over shorter

times. Compact, diode-pumped solid-state lasers that are excellent candidates for space-qualifiable

lasers have been feedback-stabilized to a few hertz (approximately 10 -14) at output powers of a few

milliwatts (Day, et ai. 1990); at output powers of several hundred milliwatts they have exhibited

short-term free-running stabilities of a few kilohertz (Kane, et al. 1987; Byer 1988; Fan and Byer

1988; Bush, et al. 1988). The prospects for improvements in both power and frequency stability are

excellent.

Many science applications also require or would be enhanced by the addition of coherent laser

transponders, devices that receive, amplify, and retransmit laser signals without losing informa-
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tion aboutthe phaseof the received signal. The scientific applications of coherent optical and

infrared phase measurements are myriad. Frequency-stabilized laser sources and phase-matching

laser transponders will be key technologies for scientific use, both in space and in the laboratory.

This report describes several possible ways in which frequency-stabilized laser technology could

be used in space for scientific measurements. The kinds of measurements that exploit high stability

basically are of two types: interferometric measurements of angle and coherent Doppler measHre-

ments of relative velocity (range rate). Some applications actually use both kinds of measurements

at once. The challenging applications just cited of low-frequency gravitational-wave detection and

high-resolution mapping of planet gravity fields, for example, both involve coherent interferometric

measurements of the changing separation -- range rate -- among laser-carrying spacecraft. The

baseline lengths for these two applications are quite different -- 10 r km for the gravitational-wave

interferometer and 10 to 100 km for the gravity-field mapper. Coherent laser systems are desirable

for both because of the potential for high-accuracy range-rate measurements and quantum-limited

signal-to-noise performance.

1.2 Outline of report

While scientific applications differ in their implementations of frequency-stabilized laser technology

and in the objects of their measurements, many share features fundamental to measurements that

exploit the temporal (and spatial) coherence of an electromagnetic wave. This report therefore

begins (chapters 2 and 3) with a heuristic description of the temporal coherence of a laser and its

relationship to the precision with which certain kinds of measurements can be made. General types

of measurements possible with laser sources of high temporal coherence are described, and additional

factors that limit measurement precision are pointed out.

Chapter 4 describes in detail two laser-based measurement techniques that would be used in

various forms for all the applications discussed in this report. These techniques are interferometric
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measurementsandcoherentmeasurementsof relativevelocity (range rate). Various limitations to

these techniques are discussed, based on the descriptions of lasers and precision measurements given

in chapters 2 and 3.

Chapter 5 examines in detail five areas of scientific application that use frequency-stabilized

lasers and related technology. The first three -- metrology systems (e.g., for astrometric or imaging

interferometers), gravitational-wave detection, and gravity-field mapping -- involve interferometric

measurements of an optical path difference. The last two -- atmospheric wind-sensing and studies of

planetary atmospheres and ring systems -- involve precise Doppler measurements with coherent laser

links. Discussion of the performance and limitations of these experiments is based on the analyses

of the previous chapters. Chapter 6 describes qualitatively some additional scientific applications of

frequency-stabilized lasers in space. Chapter 7 is a brief summary of the report, including a table

summarizing the laser frequency stabilities needed for a variety of applications. (The Executive

Summary provides a more detailed summary.) An appendix gives some supporting details for the

analysis in section 5.3 of gravity-field mapping using coorbiting laser-carrying spacecraft.

20



2. FREQUENCY-STABILIZED LASERS

Lasers are quantum-mechanical devices that generate intense, coherent, extremely monochromatic

beams of light at optical or infrared wavelengths. This section considers, in turn, each "of these

features -- coherence, high intensity, and monochromaticity -- and how they are realized. Section 2.1

reviews some of the basic principles of lasers, focusing on achievement of coherence and high output

intensity. Section 2.2 looks closely at the issues of monochromaticity -- or how stable, single-

frequency operation can be achieved.

2.1 Review of principles of lasers

2.1.1 Laser coherence

In the description of light as an electromagnetic wave or wave packet made up of certain frequencies,

polarizations, and directions of motion (plain-wave modes), coherence is a measure of how well

the amplitudes and phases of each component mode are defined. A familiar consequence of phase

coherence, for example, is interference phenomena. The generation of intense coherent radiation at

optical and higher frequencies would be as straightforward as it is at radio frequencies, if the classical,

wavelike description of the electromagnetic field were adequate. According to that description, an

oscillating electric dipole produces an electromagnetic field whose amplitude and phase at each point

in space and time are related in a precise way to the amplitude and phase of the oscillating current of

the dipole. But quantum theory maintains that the amplitude and phase of an electromagnetic wave

are complementary observables and therefore cannot be measured simultaneously with arbitrary

precision. Hence there is no realizable "state" or mode of the electromagnetic field with an exact

amplitude and phase at every point in space and time. Of course, such idealizations -- plane-wave

modes -- are used frequently as bases for mathematical descriptions of the electromagnetic field. But

in nature (according to quantum theory), the state closest in character to the idealization of a plane
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wavewith perfectly defined amplitude and phase is a so-called "coherent state." Coherent states are

plane-wave modes whose amplitudes and phases have uncertainties, or standard deviations, that are

identical in magnitude (when suitably normalized, e.g., to the square root of photon number, or the

square root of energy divided by the energy ht, per photon), and equal to the minimum allowed by

uncertainty principles. (For further discussion and definitions, see, e.g., Louisell 1973 and references

therein, or Loudon 1983.) These minimum "zero-point" or vacuum-field fluctuations contribute to

the total electromagnetic field a combined energy density equivalent to one-half that of one photon,

hu/2, for each possible frequency, polarization, and direction of motion (h is Planck's constant and v

is frequency). They are responsible, for example, for causing spontaneous transitions among atomic

levels with consequent emission of photons. They are responsible for the "shot noise" associated

with photon-counting detectors.

Zero-point fluctuations of the vacuum electromagnetic field also are responsible for the difficulty

of generating coherent radiation at optical and higher frequencies compared to radio frequencies. To

see why, consider what coherence means in terms of a quantum-mechanical photon description of

the electromagnetic field, rather than the classical wave description. Roughly speaking, coherence

is a measure of the relative contribution to the total energy flux in a beam of light arising from

identical photons with specific energies, polarizations, and directions. The energy contribution from

individual optical-frequency photons is several orders of magnitude larger than that from individual

radio-frequency photons. Hence the relative energy contribution from vacuum fluctutations, which is

not associated with photons of any preferred polarization or direction, causes negligible degradation

of overall coherence at radio frequencies, but not at optical and higher frequencies. An X-band

photon (wavelength)_ __ 3.6 cm) has an energy of only 5.6 x 10 -24 joules (J), roughly five orders of

magnitude smaller than that of an optical photon at wavelength ,_ = 0.5 micron (/_m), 4 x 10-19 j. At

finite temperatures, an electromagnetic field also contains thermal photons, which have no preferred

polarization or direction. The energy contribution to the field per mode from thermal photons is
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almost two orders of magnitude greater than from X-band vacuum fluctuations even at cryogenic

temperatures -- kBT = 4 x 10-22 J at only 30 K. [Here kB is Boltzmann's constant, and T is

temperature in kelvins (K).] Hence at radio frequencies, coherence is limited ultimately by the

presence of thermal photons, not quantum-mechanical vacuum fluctuations. But at optical and

higher frequencies, coherence is limited ultimately by vacuum fluctuations.

In traditional atomic lasers, optical or infrared photons are emitted as a result of certain radia-

tive transitions among atomic states (energy levels associated with the valence electrons of atoms).

The allowed transitions, which restrict the characteristics of the emitted radiation, are determined

by internal symmetries and conservation laws. The probability that a particular transition will

occur, resulting in emission of a photon with a particular frequency, polarization, and direction, is

proportional to the relative contribution to the total radiation energy density in the vicinity of the

atom from photons with those same characteristics. Because the vacuum fluctuations contribute

an energy density equivalent to one-half that of one photon for every frequency, polarization, and

direction, they will serve to stimulate the emission of photons of every such allowed characteristic.

Such emission is called spontaneous because it occurs even if the mean number of photons with those

characteristics is zero in the vicinity of the atom. The probability of such emission is determined

by the nature of the transition, specifically by the energy difference between the atomic levels and

the quantum-mechanical probability amplitude (matrix element) for a transition between the two

atomic states. The emission of photons of certain allowed characteristics will be enhanced if addi-

tional photons with those characteristics are present -- a process known as stimulated emission. In

order to produce highly coherent light, consisting of many photons with identical characteristics,

the probability for stimulated emission must be greater than that for spontaneous emission; i.e.,

the mean number of photons present with the desired characteristics must be greater than one per

mode.

To quantify the criteria for making stimulated emission dominate spontaneous emission, consider
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asimple.physicalargumentgivenbyEinstein(1917)to explainempiricalobservations,anargument

that doesnot appealto quantumtheoryor referto vacuumfluctuations.Denotetwo(infinitely

narrow)energylevelsof anatomicsystemby 1 and2,betweenwhichradiativetransitionsoccur

andproducephotonsof energyhr. Denote the probability per unit time of a spontaneous transition

from level 2 to 1 with emission of a photon of energy hv by a. (Physically, 1/a is identified with

the luminescence decay time.) Einstein postulated that the probabilities of stimulated transitions

between the two levels, involving either absorption or emission of a photon of energy hv, were

identical, and were proportional to the energy spectral density of the local radiation, p_ (energy per

unit volume and unit frequency interval). Denote that proportionality factor by b. (The coefficients

a and b are calculated in most standard quantum mechanics texts, e.g., Merzbacher 1970 or Schiff

1968; both are proportional to the square of the atomic-dipole matrix element.) The probabilities

for absorption and emission of a photon therefore have the following forms:

Pabs : Pv b; Peru : Pspon -I-Pstim = a @ Pv b. (2.1.1)

The radiation spectral density Pv is equal to the product of the number of plane-wave modes

per unit spatial volume and unit frequency interval nv, the average number of photons in each mode

7_'_, and the energy of each mode hv. The number of modes per unit volume in the frequency

interval dv is just the three-dimensional momentum-space volume element multiplied by 2 (for two

polarizations):

d3p 8_ru_
n, dv = 2 _ = _ dr. (2.1.2)

The radiation energy spectral density Pv is therefore

8_hv 3

pv = hu n. Nv = ca Nu. (2.1.3)

For a black body in thermal equilibrium at temperature T, the average number of photons per mode
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is given by Planck's distribution (which follows from assuming a Boltzmann energy distribution):

= (eh./kBr_ 1)_1. (2.1.4)

The average number of photons absorbed is N1 Pab,, and the average number emitted is N2 Peru,

where N1 and N2 are the mean numbers of atoms in the lower and upper levels, respectively. In

thermal equilibrium, the rate of absorption of photons must balance exactly the rate of emission of

photons:

N1 p,, b = N2 (a + p_, b) .

With the equilibrium ratio of populations given by a Boltzmann distribution*, N2/N1

the ratio of stimulated to spontaneous emission intensity is equal to the mean number of photons

per mode, _vv b [eq. (2.1.4)]:

Istim "_'bv b (ehV/kBT-- Pv bid -- = - 1) -1 . (2.1.6)

Ispon

This is exactly the result stated earlier: spontaneous emission is like stimulated emission, with the

vacuum fluctuations serving as the stimulating radiation energy density, equivalent to an average of

one photon in each mode of the field.

The condition for stimulated emission to dominate spontaneous emission is that the above ratio

exceed unity, or that the product of temperature and wavelength satisfy

>1.

At submillimeter and longer wavelengths, this condition is met easily, even at cryogenic temperatures.

But at optical and shorter wavelengths, the mean number of appropriate stimulating photons must

* Use of a Fermi distribution (appropriate for electron statistics) will lead to a similar result,

since the energies of the atomic levels (relative to the chemical potential) are greater than kBT.
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beboostedwithanexternalpumpingsourceinorderto meetthiscondition.An externalsourceof

opticalphotonsthat producesaspectralfluxdensityIv - Io/Av (expressed here as a flux density

I0 evenly distributed over a bandwidth Av, with units of W/m2-Hz, for example) will produce a

radiation energy spectral density Pv = (8_/c) Iv. Since the ratio of the Einstein coefficients is

a 8rhv 3
- = hv n_ - (2.1.8)
b c3

[eqs. (2.1.3) and (2.1.6)], the ratio of stimulated to spontaneous emission in the presence of an

external pump is

Istim C2 I0 2) /3GHz_ sIspon-Iv _-5_a--(100mW/cm, \_] (lp-_) (2.1.9)

Thus, with a sufficiently strong pump source (e.g., 100 mW/cm 2 of 1-_m wavelength radiation over

a 3-GHz bandwidth), stimulated emission can be made to dominate spontaneous emission at room

temperature and visible wavelengths.

2.1.2 Laser intensity

While coherence requires that stimulated emission dominate spontaneous emission, the other primary

feature of laser light -- high-intensity output -- requires that stimulated emission also dominate

absorption. Equations (2.1.1) and (2.1.5) above show that in thermal equilibrium the ratio of the

light intensities of emitted (stimulated) and absorbed light is equal to the ratio of populations in

the upper and lower levels:

Istim/Iabs = N2/N1 = e-hv/kBT • (2.1.10)

Hence a laser requires a mechanism for maintaining a nonequilibrium population inversion between

the upper and lower levels, with the ratio N:_/N1 kept as large as possible. Note that external

pumping with optical photons of the desired transition frequency will not produce the required

population inversion. The pump light would induce transitions equally in both directions, leading
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ultimately(in the limit that spontaneous emission is negligible relative to stimulated emission) to

an equalization of the populations [eqs. (2.1.5-7)], but no inversion.

Physical characteristics of the electromagnetic radiation produced by a lasing system are con-

trolled by placing the laser in a resonant cavity, whose natural vibration modes match and therefore

amplify the waves from the laser, leading to the formation of steady, standing-wave oscillations.

Because in practice the dimensions of cavities are much larger than a wavelength of light (e.g.,

millimeters or longer), a given cavity may be compatible with many different modes. To produce

highly monochromatic, coherent light, the cavity shape and characteristics must be optimized to

allow the minimum possible of modes. Associated with each cavity-mode oscillation at frequency t,

is a quality factor Q (Q >> 1), or time constant vlc - Q/2_ru that can be viewed as the average

photon lifetime in the cavity. The instantaneous energy density in the cavity mode at time t is

U(t) = Uo e -t/_°. Thus Q/2_r is (approximately) equal to the ratio of the initial energy in the

cavity mode to the energy lost per cycle:

Uo 1 Q
m _ m

Uo-U(t=l/v) 1-e-2"lQ -- 2_ -- vr_c. (2.1.11a)

If r is the cavity mirror reflectivity (assumed identical for both ends), t the transmissivity, and l

the loss due to absorption, scattering, and diffraction, the overall decay time ru for a laser cavity of

length L is
L

ra¢ = c(1 - r) -_ 3.3 nsec

(l-r) = t + 1.

(ooo  \l-r]
(2.1.11b)

For a cavity length L -- 1 mm and mirror reflectivity r = 0.999, the time constant is about

3.3 nsec, which corresponds to a cavity spectral full width at half maximum (FWHM), or "cold-

cavity" line width, _ftqc - (2_rr_c) -1 __ 50 MHz. The average photon lifetime, or luminescence decay

time a -I, for an atomic transition sets an upper limit for the cavity decay time; for atomic dipole
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transitionsthat produceopticalor infraredphotons,thesetimesaretypically1-10nsec.Theloss

coefficientassociatedwith a laser cavity is

(____..m) 1-r1-r _ _1 _ 0.01 cm -x (0.---_) . (2.1.11c)---- L crle

In atomic systems, creation of a population inversion typically requires three- or four-level sys-

tems, such as those depicted in Figure 1. Three-level systems (Figures la,b) suffer the disadvantage

that initially all of the atoms are concentrated into the lowest level, and inversion must be reached

against this strongly populated level. A four-level system (Figure lc) need not have this disadvan-

tage, and therefore can operate with a lower pump intensity. The chromium ion Cr 3+ is a three-level

quantum system commonly used, e.g., in ruby lasers (Maiman 1960). The neodymium ion Nd 3+ is

a four-level system, commonly used in solid-state [glass or yttrium-aluminum-garnet (YAG)] lasers

(Byer 1988).

Although lasers based on atomic systems must involve more than two energy levels, other kinds

of two-level laser systems do exist. An example is a semiconductor laser (Figure 2), where an

inversion is reached at a "P-N" junction between regions of different types of conductivity, N- type

(electrons) and P-type (holes). At the junction, free electrons and holes recombine and emit light.

Electrical pumping ensures a constant flow of electrons and holes toward the junction.

Gas lasers (Figure 3) are an example of another way to produce the requisite population inver-

sion. Here two systems exchange energy. One, a two-level system, is pumped to excite its upper

level, from which energy is transferred to the highest energy level of the second, three-level system.

The second system undergoes a rapid, nonradiative transition to its second, metastable level, and

inversion is reached between the first and second levels of the three-level system. A helium-neon

laser operates in this way: helium atoms are pumped from the ground state to their 23s level by

an electric discharge and this energy is then transferred by inelastic collisions to the neon atoms,
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bringingthelatterto their2sstate.

2.2 Laser frequency stability

Turn now to the monochromaticity of a laser. While other kinds of instabilities in lasers, such

as fluctuations in power or beam geometry, can be important sources of error in some laser-based

measurements, frequency stability is often one of the most severe error sources, and it can pose a

significant technical challenge.

2.2.1 Line width and noise-power spectral density

A laser's output is centered about some frequency v (the nominal radiative transition frequency),

but its instantaneous frequency varies because of stochastic processes such as spontaneous emission

and deterministic processes such as environmental or apparatus-related disturbances. Determinis-

tic processes cause the center frequency to drift with time, and both stochastic and deterministic

processes produce a finite spectral line width 6v. This section provides a heuristic overview of the

characterization and measurement of laser frequency stability. For a more rigorous discussion, the

reader is referred elsewhere (e.g., Allan 1966; Barnes, et al. 1971; Howe 1976).

The electric field E(t) at the output of a laser operating at central frequency 2Try0 with amplitude

E0 and time-varying phase ¢(t) has the form:

E(t) = Eo cos[2rv0t + ¢(t)] . (2.2.1)

In general, the instantaneous phase ¢(t) may result from some Gaussian random process.

instantaneous frequency excursion, or deviation from the central frequency v0, is

1 de(t)
Av(t) = 2_ dt
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For time scales longer than a microsecond or so, frequency stability is often characterized by a time-

averaged measurement of the observed frequency fluctuations. The conventional quantity is called

an Allan variance (or its square root, the Allan standard deviation; Allan 1966). The Allan variance

is calculated by making successive measurements of the fractional frequency excursions Av(t)/Vo

at regular time intervals r, squaring the difference between successive measurements and averaging

those squared differences over all the measurements. Mathematically it is defined as

N
1

0"2(T) _-_ 2Nvo 2 _ _['_(_j+l) - _-'_(tj)] 2 , (2.2.3a)

j=l

1 /ti+rA'_v(tj) _----- Au(t) dt . (2.2.3b)
T j t_

Because it is an integral measure of the fluctuations and hence contains contributions from even

the lowest frequencies, the Allan variance is appropriate for characterizing frequency stability even

on very long time scales (minutes or hours). Throughout this report, a simple, heuristic description

of frequency stability and its relationto precision science measurements is used, and Allan variances

will not be referred to again explicitly. However, when required levels of fractional frequency stability

are indicated for the various scientific measurements discussed, the Allan standard deviation is the

quantity that must take on those indicated values.

On short time scales, frequency stability is characterized by a power spectral density and mea-

sured by direct spectral analysis. A power spectral density Sv(f) of the frequency fluctuations is

defined as the Fourier transform of the autocorrelation Cv(r) of the instantaneous frequency excur-

sions Av(t):

Sv(f) f]o°° dT Cv(T) cos27rfr,

¢

- lim 1 [TI2 dt (Av(t) Av(t + r)) ,
T---*vo "T j-T/2
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where the angle brackets (...I denote an appropriate ensemble average of the measured values.

When the spectral density &,(f) can be represented by power-law noise processes, it can be related

in a simple way to the Allan variance (Barnes, et al. 1971). For example, "white" frequency

noise corresponds to an Allan variance that increases for shorter measurement times as 1/v/Y, while

"flicker" frequency noise [S_(f) oc 1/_ corresponds to a constant Allan variance and white phase

noise [S_(f) o¢ f_] corresponds to an Allan variance that decreases for longer measurement times as

1/r 2.

The spectral line width 6v of the laser is also an integral measure of the fluctuations and can be

used to characterize long-term frequency stability; it will be used in a general way throughout the

rest of this report to characterize laser frequency stability. Its relation to the power spectral density

S_(f) of the fluctuations in laser frequency v depends on the amplitudes and frequencies f of the

fluctuations. For example, it can be shown (see, e.g., Elliot, et al. 1982) that in the limit that the

amplitudes of the fluctuations, or frequency excursions, are small and the fluctuations occur rapidly,

the rms frequency excursion and the laser line width scale linearly with the power spectral density

Sv(f). In the other extreme of large frequency excursions that occur slowly, the rms frequency

excursion and laser line width scale linearly with the rrns power spectral density. These limits are

given more explicitly below. Physical intuition into them can be gained with a simple model of

the fluctuations as sinusoidal modulations of the laser phase, described below (after Salomon, et al.

1088).

Consider the laser frequency fluctuations to be a superposition of sinusoidal phase modulations

with different modulation indices flj and modulation frequencies fj (j = 1,2,...) spread over some

bandwidth B. These modulations cause the instantaneous phase ¢(t) and frequency v(t) of the laser

output electric field to take on the forms

¢(t) = __,#jsin2rfjt, v(t) = Vo + __,_ifjcos2_rfjt • (2.2.5)
J J
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Specializenow to a single modulation frequency f and associated modulation index/_. The instan-

taneous frequency v(t) fluctuates about v0 with a root-mean-square (rms) frequency excursion

1
Avrm, " _ _' f. (2.2.6a)

x/2

The relative power contained in the modulation sidebands is given by the square of the first-order

Bessel function Jl_(/_), which is approximately equal to/_2/4 for _ << 1. If the excursions Avrms

are small and occur rapidly (high modulation frequency f), the sidebands will contain little power,

because/_ << 1. Physically, this means that the high modulation frequency prevents any appreciable

phase error from accumulating before the modulation direction reverses and the phase error begins

to integrate back to zero. The laser line width /_v can be approximated by one-half the highest

modulation frequency f0 for which the sideband power becomes appreciable, which, for the sake of

definition, can be said to occur when the modulation index/_ becomes as large as 0.5:

5v _ fo12, /_0 --=0.5. (2.2.6b)

If the frequency excursions have a white power spectral density Sv(f) =- S_o (which is not an

inappropriate model for feedback-stabilized lasers, discussed in section 2.2.3), the rms excursion

Avrm, will scale with the square root of an associated bandwidth B:

A//rm s m _ • (2.2.6c)

For excursions associated with the modulation frequency f0, the appropriate bandwidth B is centered

on f0 and is of order f0. Equating expressions (2.2.6a) and (2.2.6c) for modulation index/3o = 0.5

implies that the rms frequency excursion at modulation frequency f0 is related to the power spectral

density by

Avrms(f0) ----2V_ S'uo , (2.2.7a)
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andthelaserlinewidth6v,approximatedby fo/2, is

_v_ 4[Avrm,(fo)] 2 /fo _-- _ mvrms(f0) _-_ 4 Svo. (2.2.7b)

This result agrees qualitatively with a rigorous analysis by Elliott, et al. (1982) of the effects of

frequency modulation on laser line width and line shape. That analysis shows that in the limit of

small, high-frequency excursions, the autocorrelation of the excursions is exponential, and the power

spectrum of the frequency excursions is Lorentzian. With the assumption of Gaussian noise whose

power spectrum is uniform up to a cutoff frequency B - f0, they find the FWHM of the power

spectrum of the frequency fluctuations, denoted here by (_/_WHM, to be related to the mean-square

frequency excursion AVrmB by

_FWHM : 11" [AVrm,] 2 lB. (2.2.7c)

In the opposite limit of large frequency excursions that occur slowly (3 >> 1), Elliot, et al. found

that the power spectrum is Gaussian, and that the laser line width (also Gaussian in shape) scales

with the square root of the power spectral density S_ and is on the order of 2.35 times the rms

frequency excursion.

Improvement of a laser's frequency stability, or reduction of its line width, requires reduction

of the noise-power spectral density S_(f). This can be accomplished with feedback from a more

stable frequency reference. Such techniques and their performance are considered in section 2.2.3.

First, however, section 2.2.2 considers the limits to frequency stability without feedback, i.e., for

free-running lasers.
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2.2.2 Free-running frequency stability

Figure 4 is an oscilloscope trace showing the free-running line width for a specially designed diode-

pumped Nd:YAG laser ring oscillator, obtained by spectral analysis of the heterodyne beat signal

between two such free-running oscillators (Kane, el al. 1987). The line width of any free-running

atomic laser is prevented from being arbitrarily narrow by the process of spontaneous emission. The

resulting minimum line width was shown by Schawlow and Townes (1958) to have the following

form:

_rhv hv

_V.pon = _ (6v_e) 2- 4.Pone 2 (2.2.8a)

Here P0 is the average output power of the laser, and 6vie = (2z'r_c) -1 is the laser-cavity line width,

inversely proportional to the cavity time constant rt_. This line width is approximately 1 Hz for a

milliwatt of average power at 1-micron wavelength and a time constant of 4 nanoseconds (ns) or

40-MHz cavity line width:

_V6pon _ 1Hz (lpm lmW/ (4ns_- / ' (2.2.Sb)

Comparison of expression (2.2.8a) with eq. (2.2.7c) and the surrounding discussion shows that the

process of spontaneous emission can be viewed as causing rms frequency excursions that are smaller

than the laser-cavity line width Sv_c by the factor _, or 1/2V_'_'N, where N =_ Por/hv is

the number of photons detected in an integration time r = (2_rB) -z.

It is common in practice to refer not to the time constant but to the loss coefficient a of the

lasing medium, where a = (cr_c) -1 [eqs. (2.1.11)], which is approximately 0.0083 cm -z for a 4-nsec

time constant. Semiconductor diode lasers tend to be extremely lossy, with c_ = 10 cm -1 being

not uncommon. [For a cavity length L __ 0.3 mm, a = 10 cm -z would correspond to end-mirror

reflectivities of only 70%, according to eqs. (2.1.11.)] For a 1-mW average output power at 1-pm

wavelength, such a diode laser would have a minimum free-running line width of about 1.5 MHz. In
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contrast, a solid-state laser made from a Nd:YAG crystal has very low losses; a can be as small as

0.001 cm -1 (implying end-mirror reflectivities of order 0.9999 for a l-ram crystal, or time constant

r_c -_ 33 ns). The sponaneous-emission-limited line width for such a free-running laser would be

as narrow as 15 mHz (millihertz, not megahertz!) for output powers of order 1 mW. In practice,

free-running line widths tend to be several orders of magnitude broader than the Schawlow-Townes

limit, because of thermal, acoustic, and other additional noise sources. Short-term free-running line

widths of 3 to 10 kHz are among the narrowest that have been achieved for free-running diode-

pumped Nd:YAG ring-laser oscillators (Bush, el al. 1988).

Expression (2.2.8a) can be derived to within a factor of two from purely classical arguments [see,

e.g., Jacobs (1979)]. Consider a single-mode laser cavity with time constant r_c and average number

of photons per mode N'-"_>> 1 [so that stimulated emission dominates spontaneous emission, per

eq. (2.1.6)], in which there exists an appreciable population inversion between atomic levels 1 and 2

IN1 << N_, so that emission dominates absorption, per eq. (2.1.10)]. The average output power P0

is the difference between the emitted and absorbed power:

P0 -- hvN_ a [1 + N-_(1-N1/N2)] _- hvN2 aN"-_ (2.2.9a)

[eqs. (2.1.5) and (2.1.6)]. The average coherent radiation energy in the cavity is

U =_ Pon_ _- hv_=, (2.2.9b)

where the cavity time constant rio, or luminescence decay time, is approximately equal to the inverse

of the rate N2a at which photons are emitted spontaneously. The coherent power dissipated per

mode by spontaneous emission is

_] -- hv N2 a = Po /"_u .

35

(2.2.9c)



Theclassical cavity line width is given by

---- (2.2.9d)(_v)_l = 2_" U 2_Po _J "

The reason this expression is larger than the Schawlow-Townes limit by a factor of two is that the

argument makes no distinction between amplitude and phase fluctuations of the vacuum field. The

vacuum fluctuations have no preferred phase, while the mean amplitude of the laser field does. On

average, half of the spontaneously emitted photons are in phase with the laser field amplitude, and

half are 90 ° out of phase. The former produce amplitude fluctuations in the laser output, while only

the latter produce phase fluctuations, or spectral-line broadening.

Some recent quantum-mechanical analyses of laser frequency fluctuations suggest different ex-

planations and predictions for ultimate limits on free-running frequency stabilities. (See, e.g.,

Shapiro, et al. 1987; Gea-Banacloche 1987; Caves 1989). One analysis predicts an ultimate

limit that is smaller than the Schawlow-Townes limit by a factor of two (Gea-Banacloche 1987).

However, achievement of that limit requires illumination of one end of the lasing cavity with highly

"squeezed" vacuum, which is difficult in practice. (For a review of nonclassical, squeezed states of

light see, e.g., Kimble and Walls 1987 or Schumaker 1986 and references therein.) Unlike ordinary

vacuum, whose zero-point fluctuations (referred to simply as vacuum fluctuations elsewhere in this

report) are distributed randomly in phase, the zero-point fluctuations in squeezed vacuum have a

preferred phase; they are larger than ordinary zero-point fluctuations for some phases, and smaller

for others. Hence when these zero-point fluctuations interfere at a photon detector with an elec-

tric field that has a specific amplitude and phase, the observed photon-counting statistics may be

narrower or broader than the Poisson distribution (shot noise) that arises from ordinary vacuum

fluctuations, depending on whether the reduced or enhanced zero-point fluctuations are in phase

with the mean electric field (Schumaker 1984). The reader will ask why the use of squeezed vacuum

doesn't bring the Schawlow-Townes limit down to zero, instead of one-half its nominal value given
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by eq. (2.2.8a). The answer is that the quantum-limited free-running line width of a laser actually

arises equally from two sources: measurement noise at a photon detector resulting from interference

between the mean laser field and local vacuum fluctuations (which, in principle, can be reduced

to zero by using squeezed vacuum), and spontaneous-emission noise resulting from (unsqueezed)

vacuum fluctuations within the lasing medium.

2.2.3 Feedback-controlled frequency stability

Better frequency stability than is possible under free-running conditions can be achieved by locking

a laser to a more stable reference source. This is accomplished by removing a fraction q of the

laser light from the main beam and directing it to a frequency discriminator that is sensitive to

small changes in the laser's instantaneous frequency, such as a resonant cavity. The output of

the discriminator is used to generate an error signal, which then is used to drive a mechanism for

making small corrections to the laser frequency. Even with a perfect correcting mechanism, the

frequency fluctuations can be controlled only as well as they can be measured in the first place.

The ultimate limit to frequency stability thus comes from measurement uncertainties within the

controlling feedback loop. If this measurement noise is characterized by a spectral power density

N(v) and the servo loop has a spectral gain G(v), the noise-power spectral density of the stabilized

laser output can be reduced from its free-running value S_(f) to

S (f) + (2.2.10)
G(-) q

(See, e.g., Barger, et al. 1973; Helmcke, et al. 1982; Hall 1986; Salomon, et al. 1988.)

In principle, all frequency noise associated with operation of the laser can be reduced arbitrarily

by a servo loop with appropriate gain, and the ultimate frequency stability is limited by measurement

noise within the feedback loop or the stability of the frequency reference. Essentially all techniques

for measuring frequency fluctuations convert them to amplitude fluctuations, e.g., by sending the
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light througharesonantcavitywithverysensitivespectral transmitting and reflecting properties.

These amplitude fluctuations then are measured with photodetectors. The minimum measurement

noise associated with conventional setups (excluding schemes that incorporate nonclassical light into

the feedback loop) is due to shot noise at the photodetectors. Recall that shot noise refers to the

Poisson-distributed intensity or photocount statistics that result from interference between the mean

amplitude of the field impinging on the detector and the local vacuum fluctuations.

In practice, the requisite high gain and wide bandwidth [at least as wide as that of S,(f)] of

the feedback loop may be difficult to achieve, and the final laser frequency stability is more likely

to be limited, for example, by technical noise in the laboratory environment. This technical noise

may be deterministic in nature and arise from the environment (gravity, acoustic, temperature, and

pressure effects) or from the apparatus (e.g., electrical noise associated with the pumping source

for the laser). For example, the strain induced in a 3-cm-long laser cavity made of Nd:glass by

turning it 90 o in the Earth's gravity field (equivalent to placing a 1-gm mass on one end of it) will

shift the laser frequency by about 1 MHz. Temperature changes affect the frequency of a Nd:YAG

laser oscillator by a few gigahertz per degree, and magnetic field effects change it at a rate of about

1.5 MHz per gauss (Byer, 1989). Stochastic noise sources associated with the laser source, such as

excess quantum noise associated with the laser resonator design or jet-stream variations, also may

be significant.

Figure 5b depicts a "fringe-side" frequency discriminator commonly used for laser frequency

stabilization (Hall 1986; Drever, et al. 1983b). Part of the laser output is passed through a very

narrow frequency filter (here shown as a resonant cavity), and the other part is merely attenuated.

For maximum sensitivity, the cavity typically is tuned so that the laser frequency coincides with

the half-maximum transmission point; frequency fluctuations in the laser field are reproduced as

amplitude fluctuations in the detector output. The attenuated beam serves as a comparison to

distinguish laser frequency fluctuations from actual laser amplitude fluctuations. The ratio of the
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twodetectoroutputswouldreveal the frequency dependence of the filter independently of the input

laser power; in practice, however, because of the short time scale of the frequency fluctuations

(typically microseconds), it is simpler to subtract than to take the ratio of the two detector outputs.

The attenuator is adjusted so that the two photocurrents are equal in magnitude and of opposite sign

when the laser is tuned to the half-maximum transmission frequency. Their difference, amplified,

becomes the error signal for adjusting the laser frequency. When the servo loop is closed, the

differenced photodetector output averages to zero; thus, to first order, small intensity fluctuations

in the laser will not affect the frequency stabilization.

The shot-noise-limited line width _/-/shot results from the photocurrent fluctuations in the two

photodetectors, which unavoidably are fed into the frequency-feedback servo and treated as frequency

fluctuations. It is related to the FWHM line width _v_¢ of the reference cavity in the frequency

discriminator and the power P incident on the photodetector by

r/P MHzJ

Here ,1 is a subunity efficiency factor reflecting both photodetector quantum efficiency and efficiency

factors associated with signal loss through the measurement process (e.g., modulation and signal

recovery). The incident power P is reduced from the laser output power P0 by such factors as

the on-resonance cavity transmission and the fraction f of the laser light that is diverted to the

feedback loops; the transmission typically is adjusted to be close to 50% for maximum sensitivity

to laser frequency fluctuations, and the fraction diverted for feedback is made as close to unity

as requirements on the final frequency-stabilized laser output power will allow (e.g., f _- 0.9).

Comparison with the Schawlow-Townes limit [eq. (2.2.8)] shows that, with feedback, the limiting

line width is set by the reference cavity, not the lasing cavity. In recent laboratory demonstrations,

feedback has been used to achieve a relative line width of only 3 Hz on time scales of 100 ms

between two diode-pumped solid-state ring oscillators (X = 1.062 pm) locked to the same high-
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finesseinterferometer(Day,et al. 1990); for the systems used, this line width was approximately 20

times broader than the shot-noise-limited line width.

Recent quantum-mechanical analyses of the limiting line widths possible with feedback stabi-

lization suggest that the shot-noise limit of eq. (2.2.11) might be surpassed by a factor of two if

squeezed light is used in the feedback loop, but improvement beyond that is not likely (Caves 1989).

In one of these analyses, the expression (2.2.11) is reduced by the factor

1 [1 - Wd (1-_) + eloss]
2 (2.2.12)

Here ¢ represents phase fluctuations in the vacuum incident on the far end of the reference cavity,

with ¢ = 1 for ordinary (unsqueezed) vacuum; _d is the photodetector quantum efficiency; and eloss

is a small but positive loss term designed to be small in fringe-side locking stabilization schemes. If

the loss term can be ignored, and maximally squeezed vacuum were available to use in the feedback

loop (_ = 0), the line width given in eq. (2.2.11) could be reduced only by the factor (1 - yd)/2.

While the use of nonclassical light may become a routine refinement to precision laser measurement

techniques in the future, at present more straightforward approaches are being pursued, such as

increasing laser output powers and finding more stable reference cavities (or alternatives to cavities,

such as atomic or molecular spectral lines).
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3. FREQUENCY-STABILIZED LASERS FOR PRECISION MEASUREMENTS

3.1 How does frequency stability limit measurement precision?

The previous chapter distinguished among different characterizations of laser frequency stability.

In this chapter and for most of the rest of the report, such care is abandoned in favor of a simpler

approach, which will suffice to provide a general understanding of the relationship between frequency

stability and measurement precision for most applications. Denote the typical magnitude of a laser's

frequency fluctuations over a time scale of interest by 6v. Define a corresponding "coherence time"

Tooh as that time over which the fluctuations produce a phase uncertainty of 2r, or one cycle:

Tcoh _-: (6//) -1 ' (3.1.1)

If such a laser is used as a clock, with time measured by the number of wave periods counted,

then, for times longer than rcoh, the measurements will have an uncertainty of at least one wave

period. A corresponding coherence length is defined by Crcoh. Measurements of free-space electro-

magnetic propagation distance time-tagged to this oscillator would have uncertainties of at least one

wavelength for distances longer than C7"coh.

Fractional frequency stability is defined as 6u/L,, where u is the nominal center frequency of the

laser. Short-term free-running line widths as narrow as 6 to 10 kilohertz (kHz) have been achieved

with diode-pumped solid-state (Nd:YAG) ring-laser oscillators operating near ,_ = 1 pm with several

milliwatts of average output power, corresponding to fractional frequency stabilities of a few parts

in 10 TM (Bush, et al. 1988; Kane, et al. 1987). The discussions in section 2.2 [eqs. (2.2.8)] indicate

that these stabilities are several orders of magnitude worse than the limits set by losses in the gain

medium alone. The poorer performance is caused primarily by thermal and other environment-

related fluctuations, as well as fluctuations in the power of the diode laser used for pumping. With
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feedbackandappropriatecontrolof environmental effects and pump-power fluctuations, millihertz

line widths are possible [eq. (2.2.11)]; line widths of a few hertz have been demonstrated recently

(Day, et ai. 1990).

The effect of frequency stability on measurement precision or sensitivity can be seen by consid-

ering the simplest "single-arm" interferometer: a beam splitter, a stable reference clock, and a fringe

counter (Figure 6). Fluctuations _L in the distance L can be monitored by observing the phase shifts

6OL ---- (27r/A) 6L. However, frequency fluctuations 6_ in the laser light also will produce phase

shifts 6¢v = 27r(L/c) _v; uncertainty in these must be smaller than the signal phase shifts _L

to avoid ambiguity in the measurement. The minimum discernible length change _L_ due to such

ambiguity depends on the certainty with which the laser frequency fluctuations are known, and it

scales with the path length L being measured:

_V

_fL_ = L--. (3.1.2)

In a dual-arm interferometer (Figure 7), in which only changes in the difference between the

optical path lengths in the two arms are sought, fluctuations in the measured phase shifts that arise

from fluctuations in the laser phase or frequency are correlated in the two arms. Hence they cancel

on subtraction to the extent that the two arm lengths are equal or their difference known. If the

two arm lengths (L1, L2) are held equal to a fraction f (0.1%, say), then the minimum perceptible

change in path difference L1 - L2 can be of order 1/f (1,000) times better than would be possible

in a single-arm measurement, if laser frequency fluctuations are the dominant error:

_V

6(L1-L2) -_ Lf-- (3.1.3)
1/

[L _= (L1 + L2)/2; see §4.1.1.]

Many applications of interferometry measure an optical path L in order to infer some other
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quantitysuchasthe arrival angle of light or the strength of a perturbing force, for which the mea-

sure of sensitivity is gL/L, the smallest measurable fractional change in path length. For example,

astrometric (dual-arm) interferometers must be sensitive to fractional changes in the relative optical

path of at least 5 x 10 -12 in order to measure angular separations of stars to microarcsecond (5-

picoradian) accuracy. This requires knowledge of the relative optical path lengths to 50 picometers

(pm) or better for baselines of 10 meters or shorter (see section 5.1). A measurement sensitivity of

10 -2o or better is needed to have a reasonable hope of detecting gravitational waves (see section 5.2).

Planetary gravity fields can be mapped by forming laser interferometers among two or more orbiting

spacecraft and measuring changes in their separations induced by local gravity anomalies (see sec-

tion 5.3). The required accuracies for range-rate measurements among the spacecraft depend on the

desired sensitivity and resolution (minimum measurable strength and spatial extent of anomalies)

and on the orbit altitude, since lower orbits result in stronger signals. Accuracies of order 50 nm/s

could enable sensitivity to gravity anomalies as weak as one milligal (1 regal __ 10-sg) with spa-

tial resolutions of 50 km. These range-rate accuracies would require control or calibration of laser

frequency fluctuations to approximately 10 -12 over time scales of several minutes.

3.2 Why optical-frequency stable oscillators?

Why is it desired to have stable oscillators at optical frequencies? One reason is the potential

for improved temporal and spatial resolution due to the shorter wavelengths. Another reason is

immunity to externally induced phase fluctuations that fall off inversely with frequency, such as

those associated with propagation through regions containing free charged particles (e.g., planetary

ionospheres or the solar corona; see section 3.4.4 below). Important practical reasons also include

such factors as the need in space-based applications for compact hardware (e.g., to reduce drag

and weight) and the need for small antenna beam width (e.g., to avoid multipath reflections from
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surroundingobjectsandto minimizepropagationlosses).Finally, a wide variety of scientific ap-

plications require frequency-stable lasers in order to probe directly short-wavelength phenomena or

the short-wavelength properties of media or fields.

3.3 What kinds of measurements are enabled?

The heuristic picture given in section 3.1 of the relationship between frequency stability and mea-

surement sensitivity suggests three different quantities that are measurable to high resolution with

stable laser oscillators: time, distance, and frequency. All of these capabilities support important

scientific applications in space.

As measures of time, frequency-stable laser oscillators offer superior resolution for producing,

controlling, or monitoring sampling-time intervals. The combination of high temporal resolution

and long coherence times enables extremely precise measurement of time delays on scales of minutes

or more, perhaps even interplanetary light-travel times.

As measures of distance, stable laser oscillators already have proved themselves both practical

and, in many cases, essential. They are commonly used for instrument or system metrology. Their

uses as ranging devices include such applications as remote sensing, altimetry, navigation and track-

ing, and maneuvering of vehicles. Finally, they are valuable tools in the measurement of many kinds

of forces -- gravitational, rotational, frictional, and vibrational.

As measures of frequency, stable laser oscillators are useful in two general ways. The first is

in measurements of relative velocity (range rate) via Doppler shifts. Velocity measurements can

be made relative to "deterministic" targets such as spacecraft or large natural bodies, or stochastic

targets such as dust, aerosols, or particulates in planetary atmospheres or the interplanetary medium.

For stochastic targets, measurements of Doppler-shifted back- or forward-scattered light can provide

information about velocities, sizes, composition, and spatial distribution of the targets. The second
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generalwayin which stable laser oscillators are used as a means of measuring frequency precisely is

spectroscopy. In space, a major application of this occurs in atmospheric remote sensing (Hinkley

1976). In the laboratory, important applications exist in atomic, molecular, and quantum physics.

3.4 What other factors limit measurement precision?

Although uncontrolled or uncalibrated frequency fluctuations of an oscillator present a fundamental

limit to achievable precision, in many applications they do not constitute the dominant error. Other

error sources that can be significant include photon statistics (uncertainty in measured photocount at

the output of a photodetector), scattered light, fluctuations in laser power and intensity distribution

across the beam, medium-induced phase noise (e.g., refractive-index fluctuations), and mechanical

and thermal noise. These are discussed in the following sections, as is the influence of radiation-

pressure fluctuations and the "standard quantum limit."

3.4.1 Photon statistics

A potentially important limitation to measurement precision at optical frequencies is photon statis-

tics, a quantum-mechanical contribution to fluctuations in the output of a photon detector. Although

quantum theory permits the existence of light for which this error could be arbitrarily small, so-

phisticated laboratory techniques involving feedback or nonlinear optical processes are required to

generate it. (See, e.g., BjSrk and Yamamoto 1988; Kimble and Walls 1987; Machida and Yamamoto

1988; Wu, et al. 1986.) Aside from these "nonclassical" states, all light describable by semiclassical

theory produces a standard deviation at least as large as VrN in the photocount at the output of a

photon detector, if N is the mean photocount over a particular integration period. These minimum

fluctuations, characterized by Poisson statistics, are known as shot noise. Recall from the discussion

in section 2.1.1 that shot noise actually arises from the superposition of vacuum fluctuations qnto

the mean amplitude of the electric field impinging on the photodetector.
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The uncertainty principles at the heart of quantum theory impose an inverse relation between

the precisions with which one can count photons, the photocount standard deviation aN, and the

precision _ph with which one can measure the phase (or phase shift) of a light beam (Carruthers

and Nieto 1968):

1

_f¢Ph _ 2--_N' aN -- (N _) - (N) _ • (3.4.1a)

(Here (N) denotes the mean photocount, used in place of N here for clarity.) This implies a minimum

uncertainty in a measurement of length or length change

_Lph :- _ _¢ph _> 47r0"N (3.4.1b)

In a dual-arm interferometric measurement such as that depicted in Figure 7, the input laser

light is divided in two at a beam splitter, and half sent down each arm of the interferometer. A

beam splitter is a four-port device: two inputs, two outputs. Typically, the second input port of

this beam splitter is unused; i.e., only laser light (first input port) and the vacuum field (second

input port) enter the interferometer arms. The light exiting the arms is recombined at a second

beam splitter, whose outputs are sent to two photodetectors. The fields at the output of a beam

splitter are additive superpositions of the complex amplitudes of the input fields, with opposite

signs (i.e., superpositions E1 4-E_ for input fields El, E2). When these two superposed fields are

directed onto a photodetector and the photodetector outputs are differenced, only contributions due

to interference between the two input fields remain (e.g., El*E2, where El* is the complex conjugate

of the complex field amplitude El). Hence the rms fluctuations aNd of the differenced photodetector

output Nd -- N1 - N2 typically are dominated by the product of the mean amplitude of the input

laser field (approximately equal to V_0, the square root of the mean photocount No - Pov/hv

that would be obtained if the laser power P0 were incident directly on the photodetector for the

same integration time r) and the rms amplitude fluctuations ao of the vacuum field. For ordinary

vacuum, a0 = 1, and the photocount statistics of the differenced outputs mimic exactly those of the
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shotnoise(#No= V/'_0) that would be observed with the laser alone. In a "squeezed" vacuum field,

a0 can be made to be smaller than 1, so that fluctuations in the differenced detector outputs can

be made smaller than the laser shot-noise level: aN_ = v/'_0 a0 < V_. (For more discussion see,

e.g., Caves 1981; Schumaker 1984; Grangier, et al. 1987; Kimble and Walls 1987; Schumaker, el al.

1987; Wu, et al. 1986.)

The minimum discernible change in the difference in arm lengths g - L1 - L2 is found by

applying expression (3.4.1b) to the differenced measurement:

4r _ o'0 4r \_lPor] ao

No = Por/(hv).

(3.4.2a)

Here P0 is the input laser power, r is the measurement integration time, A is the laser wavelength,

and _/is a subunity efficiency factor arising from imperfect detector quantum efficiencies, imperfectly

reflecting mirrors, and propagation losses. Note that the photon-statistics error is independent of

arm length for a given number of detected photons. Of course, the efficiency factor r/may depend on

arm length because of propagation losses. For example, t/oc L -2 for one-way propagation losses, or

r/oc L -2" if the light is reflected back and forth for n round trips before being detected. (In the latter

case, mirror losses typically are more severe than propagation losses; multireflection interferometers

are discussed in section 4.1.2.) For a 600-mW laser operating at a wavelength of 1 pm, a 1-ms

integration time, and an overall receiver and detection efficiency r/ __ 0.02, the photon-statistics

error (without resorting to squeezed vacuum) for measurements of the difference _ in arm lengths

would be about 10 -14 m, and would scale with other parameter values as follows:

( A 0.6 W l ms 0_2) I/2_ph _-_ 10 -14 m 1 #m P0 r (3.4.2b)

While 10 -14 m is an impressively small error in distance, it is unacceptably large for ground-
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basedlaser-interferometerdetectorsof gravitationalwaves,whichrequire measurement sensitivities

6l/L of 10 -2o or smaller (see section 5.2). Practical baselines for ground-based interferometers

cannot exceed about 100 kin, and at integration times longer than a few milliseconds, measurement

error is dominated not by photon statistics but by ground noise. To reach the necessary sensitivities,

techniques must be used to increase the effective laser power and the effective arm lengths, in addition

to the possibility of using squeezed vacuum. Some of these techniques are discussed in section 4.1

and in the section on gravitational-wave detection (section 5.2).

The photon-statistics limit to measurement precision applies not only to laser light but also to

broadband light, such as starlight. It presents a fundamental limit to the measurement sensitivity

of space-based astrometric and imaging interferometers in astronomy (see section 5.1). Ten minutes

of integration on a star of apparent visual magnitude my = 10 (see Allen 1973 for a definition of

the visual magnitude system) with a 1-meter aperture Dr and 2% overall receiving and detection

efficiency r/will produce a mean photocount N of approximately 107 over the wavelength range 0.5

to 0.6/zm:

N ""101°xl0-°'4'nv- rDr24 rr/-_ 107×10-°'4(m'-1°)\l/Dr'_2(m] _r )(7/_) . (3.4.3)

The corresponding photon-statistics error for measurement of the relative optical paths in an in-

terferometer would be _gph -_ 10 pm. Astrometric interferometers are being developed for use in

Earth orbit that will perform close to this limit. For an interferometer with arm lengths L of 2 to

20 meters, knowledge or control of the relative optical paths to 10 to 100 pm would enable microarc-

second angular measurement precision. Such interferometers will enable studies of astrophysical

phenomena, extend our knowledge of the distance scale of the universe, search for other planetary

systems, and enable previously impossible, stringent tests of general relativity that are sensitive to

effects of second order in the gravitational potential. (See, e.g., Stachnik 1989; Misner, et al. 1973;

Reasenberg 1988; Reasenberg, et al. 1988; Shao, et al. 1988; Vessot 1984; Mozurkewich, et al. 1988.)
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A finalremindermaybe in orderaboutwhy, at optical frequencies, it is reasonable to quote

a limiting precision based on photon statistics alone and to neglect additive noise sources that are

thermal in nature. Such additive noise dominates in radio interferometry, where equivalent system or

antenna "noise temperatures" are several tens of kelvins. A more complete expression than (3.4.1a)

for the minimum measurable phase shift 6_b due to photon statistics and the presence of additive

thermal noise sources characterized by a temperature 7", is

I[___ kB_%_ (]gB _/%j) 2 (kBTa)] 1/26¢ = _ + -7 + g-.-----5_+ _ .] , (3.4.4a)

where N is the mean number of detected photons with energy hu, and 7_0 = T,/hu. At X-band

wavelengths (A _ 3 cm), radio photons have energies hv equivalent to those of thermal photons

associated with T = 0.15 K; thus, even at cryogenic system temperatures, T, _ 60 K, kBT_0 __

400 at X-band. At visible wavelengths (A __ 1 pro), optical photons have energies equivalent to

thermal photons with T _ 14,500 K, so kBT, < 0.02 even at room temperature. Since the mean

number of detected photons N >> 1 in both the optical and radio regimes, this leads to expression

(3.4.1a) for the limiting phase error at optical wavelengths and to the following expressions at

radio wavelengths for the cases of high signal-to-noise ratio (SNR), (N >> kB_'s) and low SNR

(N << kB_b,), respectively:

6qb = 21 kB7_,N (N >> knT, >> I), (3.4.4b)

60 = _ (Y << kBT_,) (3.4.4c)

(cf. discussion in Crane and Napier 1986).
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3.4.2 Scattered light

If an appreciable fraction of the laser light arriving at a detector has not come directly from the

source, but instead has been scattered into the detector after deflection by various optical surfaces

between the source and the detector, confusion can ensue in measurements of the laser phase. At

the detector, the phase of the scattered laser light is delayed by an amount &s¢ relative to the main

beam, because the light has traveled an additional distance AL,¢:

_sc = 27ruALse/e . (3.4.5)

Since the scattered beams are coherent with the main beam, their fields add coherently at the

detector. The phase and amplitude of the combined beam can be determined by adding the fields

vectorially on a phasor diagram, where the length of each vector denotes the field's amplitude and

the direction the field's phase (see Figure 8). If the ratio of the field amplitudes of the scattered

and main beams is es¢, implying a relative intensity ese 2 in the scattered beam, the phase of the

combined beam will differ from that of the main beam by

¢ = esc sin Osc . (3.4.6a)

A realistic value for esc might be of order 10 -4. The phase shift will fluctuate in response to motions

of the scattering elements (changes in ALso) or fluctuations 8v in the laser frequency. The latter

produce proportional fluctuations 8¢ in the phase of the combined beam:

_¢ = esc cO6@sc 6_,c = esc cOS@sc 2r ALsc 6_/c . (3.4.6b)

To the extent that the laser frequency fluctuations are uncalibrated, they cause an error in the

inferred optical path length

SL = es¢ cos¢_ ALs¢ _/v .
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In practice,thepathdelayALso cannot be controlled well enough to maintain the condition cos _,: =

0, and the path delays easily can be as large as L. Hence the error in measured optical path can be

of the order

_L " tic L _v/v . (3.4.6d)

If there were no scattered light, fluctuations in the phase of the main beam due to laser frequency

fluctuations could be made to cancel in a dual-arm interferometer [eq. (3.1.3)]. This will not w6rk

for fluctuations in the combined phase ¢ because the path delays ALso cannot be controlled well

enough, tIowever, it is possible to calibrate the effect of the laser frequency fluctuations and thus

suppress the error caused by scattered light by phase modulating the laser light at a modulation

frequency higher than that associated with fluctuations in the laser frequency and higher than the

measurement frequency range (see, e.g., Man, et ai. 1978; Schilling, et ai. 1981). For a modulation

signal ¢(t) with modulation period Tin, the phase delay between the combined and the main beams

at the detector will have the form [eq. (3.4.6a)]

¢(t) = es¢ sin[¢s¢ + A¢,¢(t) ] = e,¢ (sin¢,¢ cos A¢,¢ + cos_,c sin A¢.¢) ,

A¢,¢(t) - ¢(t) - ¢(t - AL,c/c) . (3.4.6e)

High-frequency fluctuations in the phase delay 8(t) arise almost entirely from the modulation signal

¢(t). Hence the average over one modulation period Tm of the phase delay between the combined

and scattered beams is

[ /? /? ]= es...£.¢sin Csc cos A¢,¢ dt + cos ¢_: sin A¢,¢ dt
T._

(3.4.6f)

The scattered light will add coherently to the main beam (i.e., the average phase delay _ = 0)

on time scales of order Tm only if a modulation signal ¢(t) is applied for which both of the above
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integrals vanish. For such phase modulation, the phase delay of the scattered light relative to the

main beam will average to zero for integration times equal to integer multiples of the modulation

period, and sharp measurements of the phase of the main beam are possible. The challenge of finding

and generating an appropriate modulation signal is increased by the fact that typically there are

many scattered light components of appreciable strength cn, which experience different path delays

ALn. The sine integral will vanish if the time delays for the strongest scattered components, ALn/c

(n = 1,2,...), are integer multiples of the modulation period Tin. Conditions for the cosine integral

to vanish are less straightforward. In general, there is no simple analytical modulation function _(t)

that will work. Note, for example, that the modulation amplitude (maximum value of IA_s_(t)])

must be larger than _r/2 in order for the cosine function to take on both positive and negative values

in the integration interval. While it is possible to modulate the laser light with broadband white

noise, greatest success requires modulation functions designed specifically to suppress the strongest

components of the scattered light.

Phase modulation of the laser light has been used successfully to suppress optical feedback

effects from reflected light (Man, et al. 1978), and it has been applied to ground-based laser-

interferometric gravitational-wave detectors (see, e.g., Schilling, et al. 1981; Schnupp, et al. 1985).

For interferometers in which the arms are operated as optical delay lines (as in Figures 7 or 11a),

it can be shown that the strongest components of scattered light are those that have traversed the

delay lines an integer number of times (see, e.g., Billing, et al. 1983). In this case, the appropriate

modulation functions are special combinations of orthogonal elementary square-wave functions, or

Walsh functions (Harmuth 1977). In particular, to calibrate the scattered-light components that have

traversed the delay lines up to n times, an appropriate modulation function would be a repeated

series of n elementary square-wave functions. The modulation frequency v,n might be chosen to

be on the order of 10 times higher than the measurement frequency of interest -- e.g., 10 kHz for

detection of 1-ms gravitational-wave pulses, and the periods of individual square-wave functions
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making up the modulation range from 1/n 2 to 1/n times the modulation period u,n -1 (Schnupp, et

al. 1985). There is a practical limit to this technique, however: as the number n of scattered-light

components to be calibrated becomes very large, required switching times may become faster than

are realizable.

3.4.3 Other laser instabilities: power, beam geometry

Fluctuations in laser output power or intensity distribution across the beam contribute to phase

or path-length measurement error when they interact with asymmetries or imperfections in the

measuring apparatus, such as misalignments that cause imperfect interference between wave fronts.

Mechanical stabilization typically is used to control path lengths to a fringe or better. For further

control, an optical feedback loop is used to generate an error signal that controls some mechanism

such as a Pockels cell for adjusting the physical path length. Typically, such a loop works by hulling

the average phase difference _ between wave fronts of two interfering beams at a detector, where

is defined as the spatial average over the beam cross section of the local, static phase differences

¢0(x, y) weighted by the ratio of the local intensities Io(x, y) to the total average power P0:

= oo oodx dy I0(x,v)

Po =- dx dy I0(x, y) • (3.4.7)
oo (3o

Suppose first that there is no significant spatial variation in intensity across the beam cross

section [I0(x,y) -- I0]. Power fluctuations in the laser output will cause fluctuations in the error

signal @ used to control the path length and hence fluctuations in the path length around its desired

operating length. However, fluctuations in a laser's output power can be reduced to the shot-

noise level with active feedback, similar to the feedback-stabilization of laser frequency described in

section 2.2.3. With this technique, fluctuations in laser output power need not be a dominant error

in measurements of phase or of path length.
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Time-varying fluctuations 6I(x, y, t) ill the intensity distribution across a laser beam produce

fluctuations 6_(t) in the error signal (average phase difference) used to control path length:

1££= 70 oo oodx dv  I(x,v,t) ¢0(x, v) (3.4.8)

Local intensity fluctuations can be caused, for example, by lateral jitter of the laser beam or pul-

sations of the laser beamwidth. A simple lateral jitter, in which the beam preserves its shape

but "walks" laterally (in the x-direction, say) by a small, variable distance _(t), will produce local

intensity fluctuations

6I(x,y,t) = _(t) a_Io(x,y) , (3.4.9a)

where I0(x, y) is the mean local intensity. In the presence of a small tilt a between the interfering

wavefronts, which would cause a local phase delay ¢0 = 2_rxa/)_, these intensity fluctuations will

produce fluctuations 6_(t) in the error signal that are of order

2_"

/f(b(t) _ _-a _(t). (3.4.9b)

These fluctuations enforce a minimum detectable change in path length 6L __ a _, or a few picome-

ters for milliradian ('-" 0.05 degree) tilts. Fortunately, this error can be reduced with straightforward

"mode-cleaning" techniques for minimizing nonuniforrnities in the intensity distribution across the

beam. Before entering the interferometer, the laser beam is sent through a resonant (Fabry-Perot)

cavity consisting of two spherical mirrors. With proper choices for the mirror curvatures and sep-

aration, the transverse modes of the laser (which are responsible for the fluctuations in intensity

distribution) can be suppressed and only the lowest longitudinal mode of the laser transmitted.

(This rejection of the transverse modes introduces small fluctuations in the output power, which

usually are negligible.)
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3.4.4 Medium-induced phase noise

Refractive-index fluctuations, which produce fluctuations in the phase and group velocities of a

propagating wave, can be a significant source of error in optical measurements of phase shifts or

path lengths. Scattering or absorption of laser light by the intervening medium also will randomize

the phase, in addition to attenuating the amplitude. Some of these effects are described more

quantitatively in chapter 4 (see, for example, section 4.2.2 on coherent pulsed lidar with stochastic

targets). Fluctuations 6n in the refractive index will produce fluctuations of the phase of a laser

beam that scale with the path length L:

2_

die,, = -_- L 6n , (3.4.10a)

and cause error in measurement of the path length

diL, = _ die, = L din . (3.4.10b)

Under some conditions, this error can be suppressed by using a dual-arm interferometer.

If the path is very long (perhaps interplanetary distance), the path-length measurement will

depend primarily on the path-averaged refractive index and will be insensitive to small-scale random

fluctuations. In this case, deleterious effects of the medium can be alleviated by the use of two

frequencies, provided the medium is dispersive and the frequency dependence of the refractive index

at the two frequencies is known. Measurement resolution still is limited by the noise level of the

uncorrelated random phase fluctuations at each frequency, however. Because the use of multiple

frequencies can isolate spatial and temporal refractive-index variations, it also can serve to probe

properties of the medium. In planetary atmospheres, for example, refractivity profiles at several

different frequencies can provide information about pressure, temperature, density, and composition

(see section 5.5).
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While many sources of medium-induced phase noise are strongly frequency-dependent, on the

whole there is no prevailing pattern that makes their effects significantly less harmful at optical

frequencies than at radio frequencies. One exception to this statement is the effect of charged

particles. A local density of charged particles (plasma) modifies both tile phase and group velocities

(Vph and vg, respectively) of a wave, but the effect decreases approximately with the inverse square

of the frequency (see e.g., Thompson, et al. 1986):

e 2

Vp_, = c (1 4- An,/f_); A = 87¢2m------_ _- 40 mas -2 (3.4.11)

At optical frequencies, neither the overall delay nor fluctuations in the delay are significant error

sources. (The former is on the order of 10 -16 seconds or less for signals passing the Sun at 20 solar

radii, or 5o Sun-Earth-probe angle.) At radio frequencies, multiple frequencies can be used to cali-

brate the overall delay, but cancellation of the fluctuations can be imperfect because of noncommon

paths. This immunity of optical signals to plasma-induced phase fluctuations might be exploited to

achieve more accurate single-frequency coherent measurements than possible with radio oscillators

of comparable stability. Alternatively, it could be used in conjunction with multiple-frequency radio

measurements to improve the calibration of charged-particle effects and to enhance measurements

on solar and planetary ionospheres (e.g., measurements of electron densities and magnetic-field in-

tensities and distributions).

3.4.5 Mechanical and thermal noise

Sensitive measurements on Earth are limited at low frequencies by ground noise -- seismic and

acoustic motions, whose effects on path-length measurements grow roughly as the inverse square

of frequency, and gravity gradients arising from naturally-ocurring density variations in the ground

and atmosphere, whose effects increase as the inverse fourth power of frequency (Saulson 1984). At
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kilohertzfrequencies,forexample,groundnoisecancauserms motions on the order of picometers.

At frequencies above about 10 Itz, good isolation from seismic and acoustic noise (to about six

orders of magnitude) can be achieved with appropriate materials (Drever, et al. 1983a). But at

measurement frequencies below about 10 Hz, the contribution of local gravity gradients to ground

noise becomes significant enough that sensitive measurements of forces as small as those due to the

passage of a gravitational wave (producing a strain of 10 -2°, say) will never be achievable on Earth.

Although the effects of ground noise can be alleviated at measurement frequencies above about

10 Hz, thermal-induced motions still threaten high-precision distance measurements. In the most

sensitive of such measurements, laser-interferometric detection of gravitational waves, test masses

are carefully isolated from ground noise and suspended freely in vacuum chambers that approximate

an inertial environment. Still, each test mass has internal modes of vibration and exhibits low-

frequency "pendulum oscillations" due to the noninertial environment (Drever, el al. 1983a; Hough,

el al. 1983). A mass m at temperature T with a resonant frequency v0 and a quality factor Q

(damping time r = Q/2rvo), when measured continuously over a bandwidth B, will exhibit an rms

motion (position fluctuation) due to internal thermal vibration of

_Lvib _ \2_.3Qmu03 ] "" 2.6 × 10-18m _ --\ vo / \vo/

T 1 g
H -- .3000K • •

H

(3.4.12a)

The same mass, suspended in a near-inertial environment, will exhibit pendulum-type oscillations

at frequencies vp that typically are smaller than about 1 Hz. [For an equivalent pendulum length

Lp, vp "." (27r)-1(g/Lp) I/2 "_ 1 Hz (25 cm/Lp)ff2.] The resulting error in length measurements made

at frequency Urn is

( 4BkBTbtp _1/2 10 -20 (1 kHz_3]2 (B)1/2 ( lip _l/2II (3.4.12b)6Lpend = (2_4 ] "_ 8 X m \ vm / "_m \1 Hz]
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Like ground noise, these thermal noise sources preclude Earth-based detection of gravitational waves

at frequencies much lower than about 10 Hz. But they are a challenge at higher frequencies, too. For

example, the high resonant frequencies (> 1 kHz) needed to minimize vibrational noise [eq. (3.4.12a)]

require rigid construction of test masses and optical elements, which may conflict with practical

requirements of adjustability for some optical elements (e.g., beam splitters).

Although it is free from ground noise, a space environment poses its own challenges to high-

precision measurements of phase shifts or path lengths. Baselines for interferometric measurements

can be quite long -- perhaps tens of millions of kilometers -- which can offer greater sensitivity in

the measurement of forces, as in the detection of gravitational waves or mapping of planetary gravity

fields, for example. But a variety of external perturbing noise sources exist to produce measurement

errors. Solar-intensity fluctuations produce thermal distortions and fluctuating thermal gradients,

which produce anisotropic radiation-pressure fluctuations and resulting motions of test masses. This

error source can be controlled with thermal shielding and calibration followed by data correction,

but its effect increases roughly as the inverse fifth power of measurement frequency and can become

appreciable for measurements made on time scales of a day or longer (measurement frequencies v,n <

10 -5 Hz) (Bender, ef al. 1988). Random impacts of gas molecules that exist in the imperfect vacuum

surrounding test masses also produce random motions. For space-based detection of low-frequency

gravitational waves (periods of hours and longer), it is estimated that accelerations produced by

these impacts must be controlled or corrected for to about 10-1sg, which would require vacuums of

approximately 10 -11 tort for 10-kg test masses (Stebbins, et al. 1989). Cosmic-ray impacts cause

test masses to gain net electrical charges, and these must be sensed and cancelled by a driving

field. Impacts from massive particles such as protons with energies greater than about 100 MeV

would transfer significant momentum to the test masses, although these occurrences would be rare.

Other possible effects that could produce significant accelerations and motions to test masses include

outgassing from the spacecraft (e.g., from attitude-control thrusters), stochastic buffeting due to the
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solarwind,and changing gravitational accelerations (e.g., from fuel motion and depletion).

To compensate for some of these external perturbations in space, sensitive "disturbance compen-

sation systems" (DISCOS), also called "drag-free" systems, are being developed. An early version

of such a system, flown on the TRIAD satellite in 1972, was able to reduce the accelerations experi-

enced by a test mass to about 5 x 10-12g, down to subhertz frequencies (Staffof the Space Dept., et

ai. 1974). These systems use an error signal generated by the motion of an isolated test mass to cQn-

trol spacecraft thrusters and cancel the perturbing acceleration. A DISCOS system similar to that

used on TRIAD would be needed in order to map Earth's gravity field with 50-km resolution and

l-regal (__ 10-6g) sensitivity (see section 5.3). Much more sophisticated DISCOS systems, capable

of creating an inertial environment down to about 10-1Sg, are required for space-based detection of

low-frequency gravitational waves (see section 5.2).

3.4.6 Radiation pressure and the "standard quantum limit"

Radiation pressure refers to momentum transfer to a target from incident photons. Each time a

photon of energy hu bounces off a mirror, it transfers a momentum p = 2h_/c = 2h/A to the mirror,

which causes the mirror (of mass m) to move a distance __ prim in a time r. Consider a dual-arm

interferometer. If the mean numbers of photons in each arm during an averaging time r are Nl and

N2, respectively, and the light is allowed to make n round trips in each arm before being recombined

-- i.e., the light bounces off the end mirrors n times -- the mean difference in momentum imparted

to the two ends of the interferometer is

P - Pl-P2 _-- Nd.2nh/A, Nd =-- NI- N_. (3.4.13a)

If this did not vary, it would produce a constant offset in the phase difference between the light

beams exiting the interferometer arms and would not be a source of measurement error. However,

fluctuations in the net transferred momentum p (characterized by a standard deviation ap) will cause
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anerrorin measurementof the difference in optical paths for the two arms

r 2nrh

6grp -- --map = --mA erN, • (3.4.13b)

Here m is the mass of the (identical) end mirrors or test masses suspended thereon. Recall from

section 3.4.1 how the rms fluctuations in the differenced output photocount Na of a dual-arm in-

terferometer (standard deviation aN_) depend on the input laser power P0 and wavelength A, the

averaging time r, and the in-phase rms amplitude fluctuations a0 of the light entering the interfer-

ometer with the laser light (usually vacuum, in which case a0 = 1):

~ 1"
erg, -- \_] er0. (3.4.14)

Here r/ is an overall efficiency factor arising from photodetector inefficiencies, propagation losses,

and power losses on reflection. Hence the error in measurements of the difference in arm lengths

caused by radiation-pressure fluctuations is

[ O-_°W q lpm (1_g)2 ( r ) a]_3x 10 -2°m (nero) 1 0.1 A --

112

(3.4.15a)

Contrast this with the measurement error due to photon-counting statistics [eqs. (3.4.2)]:

1 (hcA) _/2 1
6gph _' _ \qPor] ner-'-o

(n_o) rlOkW 0.1 A 105s] 1/24 x 10 -21 m L Po y 1 pm 7 '

(3.4.15b)

where the factor n has been added to account for multiple reflections (see eqs. 4.1.1). These errors

become comparable when

Amc s2 1 ( TM _-_) (3.4.16a)rlPor 2 = .87rn2ero 2 __ 120 W (nao)2 lOkg 1 '
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underwhichconditiontheirmagnitudescanbeexpressedsolelyin termsof themassm of theend

mirrorsandtheaveragingtimer:

.... (3.4.16b)6eph _-- 6trp -- _-- 10-X9m I ms

(h is Planck's constant divided by 2r). For an overall efficiency r/'-" 0.02, a mass m = 10 kg, laser

wavelength A = 1/_m, and ordinary vacuum injected with the laser light (o'0 = 1), radiation-pressure

and photon-statistics errors become comparable when Por 2 = 6 kW-s 2 -- e.g., for P0 = 60 W with

10-s averaging times, or P0 = 1.7 W with I-minute averaging times. If the product rlPor 2 is smaller

than the value defined by eq. (3.4.16a), photon-statistics error will dominate radiation-pressure error.

The limiting error described by eq. (3.4.16b) is known as the "standard quantum limit" (SQL)

and is viewed by some scientists as a fundamental limit to the precision with which the position of

a free mass m (or separation between two identical free masses) can be determined by successive

measurements made at time intervals r.* Its derivation follows directly from a basic tenet of quantum

mechanics -- that the position and momentum of a free mass m are conjugate observables (i.e., non-

commuting Hermitian operators in a Hilbert space) and as such obey an uncertainty principle. The

product of their standard deviations for a single (simultaneous) measurement of both must be greater

than li/2:

[5:,25] -- 5:15- 15i: = ih _ tr_ av > 5/2. (3.4.17a)

Here _ and t5 denote operators in the Heisenberg representation, whose time dependence describes

that of the measured values for position and momentum. The Heisenberg position operator for an

undisturbed free mass m evolves over a time v as

= 2(0) +

* For discussions of the SQL see, e.g., Braginsky, et al. 1980; Caves, et al.

Bondurant and Shapiro 1984; Caves 1985; Schumaker 1985.
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Because$ and /_ do not commute, _(0) and _(r) also do not commute and, therefore, obey an

uncertainty principle:

[}(0), }(r)] = ihr/m ==_ a_(O)a_(r) > hr/2m. (3.4.17c)

Because of this minimum value for their product, the sum of the mean-square position uncertainties

at time t = 0+ (just after one measurement, for example) and at time t = r- (just before a second

measurement) also has a minimum-allowed value*:

_r_2(0 +) + az_(r -) > tir/m. (3.4.17d)

If an instantaneous measurement of position was made at time t = 0 and a result obtained with

an uncertainty az(0+), and the object is untouched until a time t = r later, how accurate can a

second position measurement made at time t = r be? The minimum uncertainty az(r +) that can

be associated with the result of the second measurement will be the rss (square root of the sum of

the squares) of the uncertainty a_(r-) in the object's position just prior to the second measurement

and the intrinsic resolution aM of the measurement apparatus:

O'.v2(T +) _--_ O'.v2(f -) + O'M s . (3.4.17e)

Clearly it would not be efficient to use an apparatus whose measurement resolution was finer than

one's knowledge of the object's position after the first measurement. Hence it can be assumed that

aM > a_(0+), in which case eq. (3.4.17d) implies that the uncertainty in the second measurement

* The reader may ask why uncertainties are characterized by standard deviations. The implicit

assumption of Gaussian wave fufictions for the object(s) and a Gaussian-preserving measurement

process are key to this argument, but whether they are essential to a proof that the SQL cannot be

surpassed has not been proven.
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mustbeat leastaslargeas(hr/m)l/2:

_> [,,2(0 +) + > . (3.4.17f)

This is the SQL for discrete measurements spaced by time intervals r. Applied to ground-based de-

tection of millisecond (kilohertz) gravitational-wave pulses, for example, it would limit the precision

of interferometric measurements of the change in relative optical paths to

(__)112 ( r 10kg) 1/2 (3.4.18a)6_ql _ __ 10 -19 m 1 ms m

An analogous expression is obtained for continuous measurements made over a bandwidth B centered

on measurement frequency v,n:

(hB) 119 ( B 10-SHz 10kg) (3.4.18b)6g,qt _ r_-v. 2' _ 6 x 10 -16 m _ vm m '

(Bondurant 1986), where the measurement frequency v,_ __ 10 -5 Hz would be appropriate for space-

based measurements of periodic gravitational waves from rotating binary stars (see section 5.2).

In almost all practical applications, other sources of measurement error will be more significant

than the SQL or radiation-pressure fluctuations. However, it is of intellectual interest at least

to consider the consequences of recent analyses that suggest that the effects of radiation-pressure

fluctuations might be cancelled by inserting specially designed nonlinear optical elements such as

Kerr cells (Bondurant 1986). Such elements produce a phase shift proportional to the incident

intensity, just as radiation pressure causes changes in path length (hence phase shifts) that are

proportional to photon intensity. Feedback would be used in conjunction with the nonlinear elements

to control mirror motions. The technique would work only over a narrow bandwidth, but it appears

feasible in principle. Its existence causes one to question whether the SQL is really a fundamental

limit. Any approach to reducing photon-statistics measurement error (increased laser power, longer
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integrationtimes,useof squeezedvacuum)necessarilyincreasesradiation-pressuremeasurement

error,andthis trade-offwasinvokedhistoricallyto supporttheexistenceof theSQLasalimit to

measurementprecisionthat couldnotbesurpassed.But if onecanreducephoton-statisticserror

arbitrarilyandthendeliberatelysuppresstheresultingradiation-pressurefluctuations,perhapsthere

isnoultimatelimit, inprinciple,to theprecisionwithwhichonecanmeasurechangesin theposition

of anobject.
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4. LASER-BASED MEASUREMENT TECHNIQUES FOR SCIENTIFIC

APPLICATIONS IN SPACE

This chapter describes two generic measurement techniques involving frequency-stabilized lasers

and associated technology that are fundamental to a wide variety of scientific experiments. The

first technique is laser interferometry, and the second is coherent measurement of relative velocity

(range rate) using Doppler-shifted continuous-wave or pulsed optical signals. General features of

each technique are discussed, applicable to short and long baselines (laboratory to planetary dis-

tance scales). Emphasis is placed on long-baseline experiments, however, since they are more likely

to be performed in space or use space-related technology and because they place greater demands on

laser frequency stability and laser-related technology in general. Methods are described for reducing

dominant errors and otherwise enhancing overall measurement sensitivity. Two types of coherent

velocity measurements are considered: those made on deterministic targets such as spacecraft (in-

dividual targets moving with well-defined relative velocities) and those made on stochastic targets

such as aerosols or dust particles (multiple targets moving with random relative velocities). Several

specific types of science experiments based on these techniques are analyzed in chapter 5; this chap-

ter lays the groundwork for those analyses, and should aid the reader in extending them to other

possible applications, such as those described in chapter 6.

4.1 Interferometric measurements

This section extends the discussion in chapter 3 of interferometric measurements and their error

sources to examine the following issues: dual-arm vs. single-arm configurations, optimum arm

lengths and techniques for increasing effective arm lengths, calibration of the effects of laser fre-

quency fluctuations in interferometric measurements (which may alleviate demands on intrinsic

laser frequency stability), and techniques to reduce photon-statistics error.
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4.1.1 Dual-arm and slngle-arm configuatlons

Dual-arm interferometers, which measure the relative change in path length between two arms of

approximately equal length, offer several advantages over single-arm interferometers. Errors that are

correlated in the two arms, such as laser frequency fluctuations or (in some cases) medium-induced

phase fluctuations, will cancel in relative measurements to the extent that the arm lengths L1 and

L2 can be held equal. In practice, the degree of cancellation, or the fraction f - (L1 - L2)/L, might

be 0.1% or smaller (L __ L1 -_ L_). For some kinds of measurements, it is possible to orient the

two arms so that the effect being measured occurs with opposite sign in each arm, in which case

differencing the signals not only cancels some errors but also doubles the signal. This is true, for

example, for the gravitational-wave detectors described in section 5.2 and the gravity-field mapping

technique described in section 5.3.

4.1.2 Optimizing arm length

Interferometers infer changes in arm length or the difference in two arm lengths by measuring the

phase shift of laser light that has traversed the arm(s). In some cases, e.g., where the physical length

change is a result of a strain induced by an external force, the length change AL will scale with the

length L itself; hence longer arms provide stronger signals. The maximum desirable physical path

length may be set by a combination of different factors: The signal may cease to increase beyond a

certain maximum arm length, e.g., because the force causing the change is of limited duration; losses

or other sources of measurement error may become unacceptably large for path lengths longer than

a certain maximum; or a maximum length may be dictated by practical constraints such as available

real estate, cost, difficulties of maintaining a sufficiently noise-free environment, or horizon-limited

line of sight.

When physical lengths of interferometer arms cannot be increased further, sensitivity to length

changes or differences AL still can be enhanced by effectively amplifying the signal before measuring
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it -- increasing the phase shift in the laser light that results from a given change in the interferometer

arm lengths AL. This can be accomplished by making the laser light traverse each arm many times.

The following subsections consider three techniques by which the optical paths, and hence the

observed phase shifts, can be increased and interferometer sensitivity improved.

4.1.2a Optical delay lines

A common way to increase the optical path lengths in an interferometer is to operate each arm as an

optical delay line, refecting the light back and forth many times before allowing it to exit the arms

and recombine with light from the other arm. Such multireflection Michelson-type interferometers

have been investigated for use with ground-based gravitational-wave detectors (Weiss 1982; Drever,

el al. 1983a). They are depicted in Figures 7, 10a, and lla. If the light makes n round trips before

exiting either arm, the measured phase shift A¢,_ will be n times larger than it would be for one

round trip, implying the potential for an n-fold improvement in sensitivity for measurement of a

given physical length change AL. The maximum desirable number of bounces is limited ultimately

by losses or, in some cases, by the characteristic time for the effect being measured. If, for example,

the length change to be measured is produced by a periodic force, then after one-half period the

force will change sign and begin producing a length change in the opposite direction, thus reducing

the signal to be measured.

Multireflection techniques suffer eventually from power losses due to imperfectly reflecting mir-

rors in the delay lines, as well as the effects of scattered light (which are aggravated by laser frequency

fluctuations and motions of or asymmetries in the optical elements; see section 3.4.2). Power losses

lead to increased measurement error due to photon-counting statistics. Suppose each end mirror in

the delay line has a power reflectivity R (nominally very close to unity), so that the fractional power

loss upon reflection from either end mirror is 1 - R. If the light makes n round trips before being

recombined at the beam splitter (2n - 1 reflections), the power in the recombined beam is smaller
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than the original input power by the factor R 2n-1. With no losses, the minimum detectable length

change would be n times smaller for light that makes n round trips instead of 1. Photon-statistics

error, which scales with the inverse square root of power arriving at the detector, will be R n-1

times worse because of power losses associated with the additional refections. Hence the minimum

detectable length change (due to photon statistics) with a multireflection system in which the light

makes n round trips in each arm is smaller than achievable with a single-reflection system by the

factor

6Lph,n R l-n e(n-1)(1-R)
= --- -_ , (4.1.1)

6Lph,1 n n

since for R "_ 1, lnR __ R - 1 (e -_ 2.718 is the base of the natural logarithms). Figure 9 shows the

resulting ratio of sensitivities 6L/L for n round trips vs. a single round trip, for various values of

mirror reflectivity R. Maximum sensitivity improvement occurs for an optimum number of round

trips

no = IlnR1-1 -_ (I-R) -1 ,

which produces an improvement, or reduction in minimum detectable length change, of

6Lph,no

_;Lph,l (1-R)e _ 2.7x 10-4 (1--_-)"I-R

(4.1.2a)

(4.1.2b)

Mirrors are available that exhibit a fractional power loss 1- R smaller than 10 -4, implying potential

improvement by a factor of several thousand. Depending on a particular apparatus, other error

sources such as scattered light or mechanical or thermal stability of the interferometer may defeat

full realization of this improvement.

4.1.2b Fabry-Perot cavities

An alternative to a multireflection Michelson-type interferometer, which provides the desired longer

light-storage times but avoids problems of scattered light, is to operate each arm as a Fabry-Perot
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cavity, set initially to be in precise resonance with the laser frequency (Drever, et al. 1983a; Spero

1986). Fabry-Perot-type interferometers are depicted in Figures 10b and llb. If the optical path

lengths in the two arms are equal, the light from each arm will be in phase and give a null when dif-

ferenced and photodetected. Relative displacements between the two arms thus show up as intensity

changes at the photodetector. While this technique is not plagued with deleterious scattering effects

or the need for large delay-line mirrors, it does put a more stringent requirement on laser frequency

stability in that the laser must be kept in close resonance with the cavities. If absorption losses

are ignored, then, for mirror reflectivities R, this system provides a potential improvement in mea-

surement sensitivity that is greater by a factor e than that provided by a multireflection Michelson.

In practice, the performance of the Fabry-Perot system is likely to be comparable to a Michelson

because of the effects of absorption losses and/or because mirror reflectivities in the Fabry-Perot

may have to be limited in order to prevent the light-storage time from exceeding the characteristic

time of the phenomenon producing the length change being measured (e.g., the period or duration

of a gravitational wave). Both multireflection Michelson and Fabry-Perot interferometers are being

developed for use in ground-based detection of gravitational waves.

4.1.2c Resonant recycling

Recall that the motive behind making interferometer arms into multipass optical delay lines or

optical cavities was to increase the phase shift experienced by the laser light for a given change or

difference in arm lengths. These schemes have been carried still further (in theory, not yet in practice)

by gravitational-wave experimenters, who plan to turn the entire interferometer into a resonator

(Drever 1983; Vinet, et al. 1988; Meers 1988). The basic idea is illustrated in Figures 10a and

10b for multireflection Michelson and Fabry-Perot-type interferometers, respectively. The technique

is especially appropriate for narrowband measurements of a periodic force that produces a length
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changeor strain of opposite sign in each interferometer arm, so that the phase shifts experienced by

light circulating in the two arms are also of opposite sign.

Consider a multireflection Michelson interferometer for illustration. The delay lines in each arm

are adjusted so as to store the light for one-half cycle (raw/2) of the expected gravitational wave,

or in general the characteristic time re�2 over which a length change of constant sign is produced

(i.e., for n = crF/4L round trips). But instead of being extracted and recombined coherently with

light from the other arm, the light exiting each arm is sent into the other arm. This exchange

continues for as long as possible before mirror losses cause the photon-statistics error to increase

enough to cancel the improvement in strain sensitivity offered by the increased signal. Since the

sign of the external force being measured changes with each half-cycle, the light circulating in one

direction around the interferometer will experience a monotonically increasing phase shift, and the

light circulating in the other direction will experience a decreasing phase shift. The increase in signal

is directly proportional to the number of "exchanges" made.

When the interferometer arms are Fabry-Perot cavities instead of optical delay lines, a single

resonating mirror suffices to produce the exchanges. The cavity lengths are adjusted to produce

cavity resonances near the laser frequency. The path lengths between the corner mirrors and the

resonating mirror are adjusted to produce two resonant modes of the coupled cavities displaced

symmetrically about the laser frequency at half the measurement frequency -- i.e., at frequencies

v 4- 1/rF. This requires that the corner-mirror reflectivity Rc satisfy

4rL
1- Rc = _ (4.1.3a)

crF

(Thorne 1987). The laser frequency then is adjusted so that it drives the lower-frequency mode.

Force-induced displacements of the end mirrors occur with frequency 1/rr and thereby upconvert
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photonsintotheuppermode.Theresonating mirror reflectivity Rn also must be made to satisfy

1-R
1-RR = 2 _-- , (4.1.3b)

e/*l-

where R is the reflectivity of the end mirrors. This technique is most useful if mirror reflectivities are

high enough and arm lengths long enough to permit storage times on the order of the characteristic

times of the signals being measured. In the case of gravitational waves, ground-based detectors

will focus on measurement frequencies around a kilohertz (see section 5.2); hence storage times on

the order of a millisecond are desirable. In an interferometer with 1-km arms, that would require

,,_75 round trips to be made in each arm. For space-based interferometers studying lower frequency

(millihertz and lower) gravitational waves, storage times of minutes to hours would be required.

With 107-km arms, a 1-hour storage time would require _ 30 round trips in each arm.

4.1.3 Frequency stability: calibration vs. control

Several aspects of the role of frequency stability in precision measurements have been discussed,

such as the use of dual arms or differenced measurements to suppress frequency fluctuations and

the increased demands on frequency stability resulting from the presence of scattered light. Here a

technique is described for calibrating the effects of laser frequency fluctuations on the interferometric

measurements. Subsequent removal of the effects from the measurement data enables detection

of more subtle effects, such as those caused by the passage of a gravitational wave. If enough

measurements can be made to calibrate the spectrum of laser phase fluctuations, this technique can

ease considerably the demands on intrinsic frequency stability of the laser output.

Consider a dual-arm configuration, which itself eases requirements on laser frequency stability

by the fraction to which the arm lengths can be held equal (section 4.1.1). Next, suppose the length

LI of one of the arms is known and maintained well enough that fluctuations ALl in it (inferred

from fluctuations in the measured phase shift of the laser light) arise primarily from fluctuations in

71



thelaserfrequency6u and from a force (such as a passing gravitational wave) whose effect is to be

measured:

ALl = AL1F + ALI_ , ALI_ = L1 m . (4.1.4a)
V

Observed fluctuations At in the difference of the two arm lengths t - L1 - L2 also arise from the

force and from laser frequency fluctuations:

At = AtF + Atv, (4.1.4b)

6u t t
At_ = t -- ALl - ALIF. (4.1.4c)

u L1

By assumption, changes ALlr induced by the force in the measured length L1 are much smaller

than those (ALly) due to laser frequency fluctuations, else the latter would not pose an obstacle to

measurement sensitivity. This is true also of the changes in the difference of the two arm lengths t,

even though AtF might be as large as 2AL1F and At_ might be smaller than ALI_ by the factor

riLl. Hence the laser-induced changes At_ in t can be calibrated from the observed changes ALl

in LI:

t
'_ -- ALl . (4.1.4d)At_ _ L1

The observed changes ALl can be measured very precisely, perhaps limited only by photon statistics

-- i.e., with an error of the order

_(AL1) >_ 4rv/-_l , (4.1.4e)

if NI is the mean number of detected photons having exited arm 1 [eqs. (3.4.1)]. Recall from

eqs. (3.4.2) that this error is as small as 10 -14 m for a laser power P0 = 600 roW, an overall efficiency

factor y = 2%, laser wavelength A = 1 pm, and integration time of 1 ms. Hence the contribution

of laser frequency fluctuations to the observed fluctuations in the differenced arm lengths can he

known to a precision even better than this, by the factor riLl, which typically would be on the order

of 10 -a or smaller. This calibration is more than adequate to be able to distinguish the changes
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causedby a forcefromthosecausedby laserfrequencyfluctuations.Evena forceasweakasa

passinggravitationalwavemightproduceastrainof 10-2°,givingachangeinmeasuredarmlength

ontheorderof 10-2°L,or 10-1°mfor 10r-kmarms.MorerigorousFourier-domainanalysesof this

methodof calibratinglaserphasenoisehavebeenperformedfor studiesof space-baseddetection

of low-frequencygravitationalwaves,withconclusionssimilarto these(Failer,et al. 1984; Bender

1989; Schumaker 1990). Use of this calibration technique could ease the demands on laser frequency

stability so much as to bring it within current state-of-the-art technology. Suitable tracking filters

must be implemented to permit an adequate spectral sampling of the laser phase fluctuations, of

course.

4.1.4 Beating photon statistics

Whether through control at the laser source or calibration during the measurement process, the error

induced by laser frequency fluctuations can be reduced dramatically. Another, more fundamental

source of error in all measurements involving light is photon statistics. Section 3.4.1 discussed the

origin and magnitude of this error. The most straightforward way to reduce this error is to increase

the received laser power P0, since the error scales as 1/v_0. Steps could be taken to increase the

laser's average output power, such as coherently combining multiple lasers (see, e.g., Byer 1988;

Nabors, et al. 1990). The use of squeezed light to drive down the photon-statistics error was

discussed briefly in section 3.4.1 and is promising in principle, though nontrivial to implement. In

this section, two additional techniques are described for increasing the amount of power in the laser

signals exiting the arms of an interferometer, given a fixed amount of input laser power. The first

technique is to use active laser transponders instead of retroreflectors in two-way measurements. It

is appropriate for long-baseline measurements of the sort envisioned in space, where propagation

losses cause significant degradation of received laser power. The second technique is to "recycle"
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the laser light by enclosing the entire interferometer in a resonant optical cavity and allowing the

circulating laser light to build up to an intensity many times that of the input laser light. This

technique is being pursued in conjunction with ground-based laser interferometers for detection of

gravitational waves.

4.1.4a Transponders vs. reflectors

Consider a laser transmitter ("A") and a target ("B") separated by a distance L. Light from the

transmitter is sent to the target and then returned, in one case after reflection and in another case

after being received, amplified, and retransmitted coherently (i.e., without loss of phase integrity).

The photon-statistics limit to the precision with which changes in the distance L can be measured

was shown in section 3.4.1 to be

_Lph -- 4_v_d ' (4.1.5)

where Nd is the number of photons detected back at the transmitter (assuming squeezed light is not

used to lower the detected photocount variance below V/_. The detected photocount Nd depends

on whether the laser light was reflected or transponded from the target. Suppose the transmitter

antenna (used both for transmitting and receiving, say) has diameter DA and the target antenna

diameter DB. The beam divergences associated with them are 0.4 - sA A/DA and OB -- SB )_/DB,

respectively. It may be necessary or desirable to make one or both of the antennas nondiffraction-

limited, e.g. , to ease pointing requirements on the target antenna; thus, practical values for aA and

sB might be 5 and 15, say, corresponding to 50- and 150-microradian beamwidths, respectively, for

10-cm apertures and l-pro wavelength laser light.

The ratios of power received at B to power transmitted from A and power received at A to
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powertransmittedfromB are given by the respective"Fresnel factors" F.aB and FBA:

FA. = PA - = ;

P_(A) ( DA _2 (DADB_
FBA- PB - \'L"_B,] = \ ]

(4.1.6)

If the target B is a retroreflector, and A transmits a laser power P0 to B which B simply reflects

back to A, the detected photocount back at A over an integration time r is

Nd rr = No t] rr FAB FBA

Po
No-op,

(retroreflector),

(4.1.7a)

where _rr iS an overall efficiency factor for the case of a retroreflector. If, instead, the target B has

a transponder that retransmits a power Pt back to A, the detected photocount at A will be

gd tr = gt rf r FBA

Pt
Y, = "_v r,

(transponder) ,

(4.1.7b)

where _tr is an overall efficiency factor for the case of a transponder. The photon-statistics mes-

surement errors for these cases are

8ASB_3 (L )2 .A,SB ( hcf5 _1,2 ( L )26Lphrr = 4r_ DADB = 41r \_) _ , (4.1.8a)

_Llohtr : 8B _2 ( L ) 8B ( h¢)_3 _1/2 ( L )
(4.1.8b)

For either retroreflectors or transponders, the photon-statistics error _Lph can be reduced with

larger antennas, shorter wavelengths, higher power lasers, longer integration times, and improved

overall efficiencies. With transponders, the photon-statistics error scales with interferometer arm
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length L, hence the minimum detectable strain _Lph/L is independent of arm length. With retrore-

flectors, propagation losses cause the photon-statistics error to scale with L 2, hence the minimum

detectable strain increases for longer arm length L.

An example of an application for which the use of transponders instead of retroreflectors would

enhance science return appreciably is the mapping of planetary gravity fields with laser interferom-

eters formed from two or more coorbiting spacecraft separated by distances L (see section 5.3). The

photon-statistics error [eq. (4.1.8a)] in measurement of the spacecraft separations is

6Lph rr _-- 2 pm _ "" P0 -- \ 75 J 50 km DA _)_ j , (4.1.9a)

and scales as indicated for different parameter values. If transponders are used instead of retroreflec-

tots, and the transponders retransmit a power Pt equal to the power P0 transmitted originally, the

photon-statistics measurement error is about 1.5 orders of magnitude smaller for the same parameter

values:

6Lph _ 0.08 pm \l-'_J Po
0.05_ I/2

L DA / y "

(4.1.9b)

4.1.4b Power recycling

When one of the output ports of a laser interferometer (a Michelson-type, for illustration) is tuned

to a dark fringe, most of the laser power exits the other output port. This power can be recycled,

or fed coherently bs_ck into the interferometer, leading eventually to a circulating light flux within

the interferometer that is much higher than the input laser power P0- The technique is depicted

in Figures 11a and llb for multireflection Michelson and Fahry-Perot types of interferometers,

respectively. It has been analyzed for application to ground-based laser-interferometer detectors of
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gravitationalwaves (Drever, et al. 1983a; Vinet, et al. 1988; Meers 1988). Ideally, the light-storage

time in the arms should be comparable to the characteristic time of the effect being measured (e.g.,

the force, such as a passing gravitational wave, producing the change in arm lengths). Losses occur at

the beam splitters and at imperfectly reflecting mirrors (the end mirrors in the interferometer arms

as well as the recycling mirror), and also as a result of imperfect interference between wavefronts at

the beam splitter due to misalignments or asymmetry between the interferometer arms. In practice,

the light-storage time ra may have to be shorter than the characteristic time VF of the force being

measured, because losses associated with the longer storage times become great enough to degrade

measurement sensitivity (through photon-statistics error) despite the increased signal resulting from

the longer optical path. If the dominant losses come from delay-line mirrors, for example, and

the recycling mirror is adjusted to provide maximum light buildup, overall measurement sensitivity

can be improved with recycling by a factor [2r,/rF(1 -- Re)] 1/2. Here Re "" 1 - R 2n-1 is the

effective overall power reflectance for a delay line involving 2n - 1 reflections (n round trips) from

mirrors with power reflectivities R. Under optimum conditions, r0 would be of order rF/2, and

the improvement factor would be approximately R 1/_-'_. This factor is approximately eR 1/2 when

n = no --- -(lnR) -I, the optimum number of bounces derived in eqs. (4.1.1) and (4.1.2). Without

power recycling, the use of multiple reflections gave a maximum improvement factor of (1 - R)e

[eq. (4.1.2b)]. Thus, power recycling can compensate effectively for the increase in photon-statistics

error that arises from power losses associated with multiple reflections in a delay line.

4.2 Coherent measurements of relative velocity

The range rate (line-of-sight component of relative velocity) between two oscillators in relative

motion can be determined by measuring the Doppler shift in the frequency of one relative to the

other. Measurement precision in many circumstances is limited by phase or frequency fluctuations
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in the oscillator(s) used for reference. Two-way measurements offer the advantage that the effects of

low-frequency fluctuations in the oscillator's phase (fluctuations that occur over periods longer than

the round-trip light-travel time) will tend to cancel. Range-rate measurement techniques for discrete

objects such as spacecraft moving with well-defined velocities (deterministic targets) differ from those

for multiple targets exhibiting a spread of velocities, such as aerosol or dust particles entrained in

wind (stochastic targets). For deterministic targets, two-way measurements generally are made

by transmitting signals to a target on spectrally pure, continuous-wave (CW) carriers, which are

either reflected back or transponded coherently (received, amplified, and retransmitted without

loss of frequency or phase integrity). For stochastic targets, measurements typically are made by

transmitting short pulses and measuring the time delay of the returned (scattered) signals, by

comparison with a stable reference oscillator. The measurements are described as coherent because

the phase of the return signal is compared with the phase of a reference oscillator, whose frequency

stability therefore must be very good. This section describes these two types of measurements, and

discusses briefly some scientific applications and the motivations for performing them with lasers --

i.e., at optical instead of longer wavelengths.

4.2.1 Deterministic targets

The ability to make accurate measurements of range rate over long distances -- tens of kilometers

to interplanetary distances -- is crucial to several kinds of science experiments, some of which are

described briefly here and in more detail in chapter 5. It also will enhance planetary missions by

enabling accurate tracking of laser-carrying spacecraft under conditions of high background light, i.e.,

with the sun or bright planets in the field of view, since the heterodyne detection process associated

with coherent laser links and me_urements of Doppler shifts provides superb spectral filtering (see

section 6.1). Under low-background conditions, coherent optical Doppler tracking provides a data
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type complementary to those types obtained with incoherent optical-tracking techniques such as

ranging (by direct detection of pulsed laser light) or angular tracking (with filled-aperture astrornetric

techniques or with interferometers).

The use of optical frequencies (lasers) instead of microwave frequencies for range rate mea-

surements on deterministic targets offers several potential benefits, especially for Earth-orbiting or

planetary missions. The small size and mass of optical components may ease launch costs or logis-

tics and can be important for minimizing range-perturbing forces among spacecraft. The narrow

antenna beamwidths offer greater power efficiency (at the expense of possible pointing challenges)

and decreased multipath reflections from the spacecraft body and appendages. Measurement preci-

sion and sensitivity also are potentially better at optical frequencies because of the finer resolution

offered by shorter wavelengths and because of decreased susceptibility to some noise sources, such as

plasma-induced phase scintillation. At optical frequencies, the primary limitations to the precision

of velocity measurements on deterministic targets are photon statistics and laser frequency fluctua-

tions. Coherent laser links, in which both intensity and phase of the laser signal are monitored, offer

potentially better measurement sensitivity and accuracy than do incoherent links, which monitor

only laser intensity. To drive down errors arising from photon statistics, which may be especially

significant over long propagation distances, coherent laser transponders should be used instead of

retroreflectors for two-way measurements.

One example of an experiment requiring highly accurate range rate measurements is the de-

tection of low-frequency gravitational waves (see section 5.2). Recall from discussions in previous

chapters that detection of low-frequency gravitational waves can be accomplished only in space

since the required isolation from seismic and other vibrational noise cannot be achieved on Earth

and because maximum sensitivity to waves whose characteristic periods range from minutes to days

(10 s to 106 seconds) requires a separation between inertial test masses of at least l0 T km. Current

estimates indicate a need for lasers with average output powers of a few watts and fractional fre-
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quency stabilitiesofabout 10-15 over short (subsecond)time scales.Frequency fluctuationswhich

occur more slowly can be calibratedduring the measurement process,as described insection4.1.3.

High-resolution mapping of planetary gravity fields is another important science application

involving coherent laser links between spacecraft (see section 5.3). This could be accomplished by

forming a laser interferometer between two or more orbiting spacecraft (one behind the other, sep-

arated by a distance L) and measuring the changes induced in their range and range rate as they

pass over an anomaly in the gravity field. The sensitivity of the measurement (strength of the min-

imum discernible gravity anomaly) is proportional to the precision with which the range rate can

be measured. The magnitude of the change induced in the range rate depends on the strength and

spatial extent of the gravity anomaly, as well as the orbit altitude of the spacecraft. For an orbit

altitude of 160 km, range-rate accuracies on the order of 20 pm/s may be just adequate to sense

1-mgal variations in the geopotential with 100-km resolution (1 mgal - 10 -3 cm/s 2 _ 10-6g), or to

sense 5-cm rms undulations of the geoid. Steep improvements in range rate measurement accuracy

are required to gain moderate improvements in spatial resolution with comparable sensitivity. Sen-

sitivity to l-regal anomalies with 50-km spatial resolution (at 160-kin orbit altitude), for example,

requires range rate accuracies on the order of 50 nm/s; the two-fold improvement in spatial resolu-

tion requires more than a 400-fold improvement in range rate accuracy (see Table 5.3.2). This level

of range rate accuracy could be accomplished with coherent laser links, but it would require laser

fractional frequency stabilities of 10 -12 or better over time scales of a few seconds. The decreased

drag associated with the smaller "antennas" used for laser links in such experiments could be an im-

portant additional advantage over radio links, in that it could permit lower orbit altitudes. A change

from 160 km to 140 km in altitude would reduce the required range rate accuracies by a factor of

3.5 for 100-km spatial resolution and a factor of ,,_ 12 for 50-km spatial resolution [eqs. (5.3.7)and

(5.3.8)].

Figure 12 depictstwo differentschemes for making two-way measurements of Doppler shiftson
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optical carriers. In the first (Figure 12a), the target spacecraft transponds the received laser signal

coherently, i.e., it phase-locks an onboard laser to the received laser signal and uses this laser to

retransmit a signal. In practice, it may be adequate for some experiments to lock to the (short-term

average) frequency, rather than the phase of the incoming signal. In the second scheme (Figure 12b),

the target spacecraft has a free-running reference laser that has good short-term frequency stability,

but need not be as stable over long times as the reference laser on the other spacecraft. The beat

frequency between the laser on tile target spacecraft and the incoming signal is measured and encoded

as data and transmitted back on the free-running laser carrier, where it is compared with a second

beat-frequency measurement made between the original reference oscillator and the received signal

from the target spacecraft. The second scheme is easier to implement and for many applications

may provide adequate measurement precision. Its performance is explored in more detail below.

If the frequency-stabilized reference laser at the originating station has a coherence time that is

considerably longer than the round-trip light-travel time, the slow fluctuations in its frequency will

cancel when the two beat frequencies are differenced, and performance of this second scheme can

approach the performance achievable with a fully phase-coherent technique. Even in the presence of

higher-frequency laser phase fluctuations, good performance might be maintained if the laser phase

noise can be calibrated by the method described in section 4.1.3.

Suppose two spacecraft (SC) labelled "1" and "2" (or one spacecraft and one base station,

for example) are separated by a nominal distance L, and SC 2 is moving away from SC 1 with a

line-of-sight velocity (range rate) v > 0. At time t = 0 SC 1 transmits a signal on a spectrally pure

carrier of frequency vl (0) - vl. When SC 2 receives the signal a time r = L/c later, it measures the

carrier frequency to be 7vl, where 7 is the nonrelativistic Doppler factor

/ _1-/_ 1/2

7 _ _ 1---_) _ l-j3, 0</3=v/c<< 1 . (4.2.1)

(The symbol _3 will be used for v/c to make the equations simpler.) If SC 2 has a free-running laser
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whose average operating frequency is _, it will measure a beat frequency between this laser and the

laser light arriving from SC 1 equal to

_2(T)= 1_2(T)- "r_1(0)1• (4.2.2)

In practice, the range rate v will have been estimated in advance and the average frequencies of the

lasers on SC I and 2 will be separated so as to avoid the need for broad detection bandwidths (at

least at SC 2). If the frequency difference vl(0) - v2(r) = Vl - v2 is chosen such that

vl - v2 _ -- (v_+ v_) , (4.2.3)
(2 - _)

the beat frequency e2(r) measured at SC 2 will be very small. SC 2 then retransmits a signal on its

carrier of v2, which has encoded in it the value of the beat frequency e_(r) that it measured. When

SC 1 receives this signal, it measures the beat frequency between the incoming carrier and its own

reference laser, whose frequency at this time is vl(2r):

q(2_) = _l(2Q - "r_2(_) • (4.2.4)

If condition (4.2.3) is satisfied and v_(2r) ,_ vl(0), this beat frequency will be on the order of

/_ (Vl + v2). To make this smaller, it might be desirable to use a down-shifted laser at SC 1 for

this beat-frequency measurement, i.e., to make Vl(2r) smaller than vl(0) by an amount of order

Iv1(0) + v2(r)]. A comparison is made between the beat frequency q(2r) measured at SC 1 and

the value of the beat frequency e2(r) measured at SC 2, and the difference used to infer the range

rate v:
_" _ EI(2T) -- ¢'2(T) "- b'l(2T) "4- _fbtl (0) -- (1 + "r)u2(r)

__(2-_)[_(0) - _(_)1 + _1(2_) - _(0).
The variance of the measured beat-frequency difference e is defined by

(4.2.5)

([a_(2,-)]_)= ([_(2,-)1_) - (¢(2,-))2 , (4.2.6a)
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where angle brackets denote an appropriate ensemble average. It depends on the variances of the

measured laser frequency vl at times t = 0 and t = 2r, the range rate v = /_c, and the degree of

correlation between the fluctuations of SC l's laser frequency at times t = 0 and t = 2r:

([Ae(2r)]2) __ ([Av,(2r)]2)+ (I- 2/3)([Avx(0)]2) -- 2(I--/3) (Avl(O)Av1(2r)). (4.2.6b)

There is no dependence on frequency fluctuations of SC 2's free-running laser because factors of 8 2

or smaller have been neglected relative to those of order unity. If the coherence time of the laser

at SC 1 is much longer than the round-trip light-travel time 2r -- i.e., appreciable fluctuations in

laser l's frequency (or phase) occur only over time scales longer than 2T -- the frequency fluctuations

at times t = 0 and t = 2T will be highly correlated. Hence the last term can be large and negative,

i.e., these low-frequency fluctuations will tend to cancel and not contribute significant error to the

measurement of the difference in beat frequencies e. If laser frequency fluctuations on shorter time

scales are appreciable, this cancellation is imperfect or absent, the latter occurring if the coherence

time of the laser at SC 1 is shorter than 2r, causing the correlated noise term to be zero.

The time averages of these variances are autocorrelation functions [eq. (2.2.4)], which are related

to the (one-sided) noise-power spectral density Svl (f) of laser 1 by

1 f0°°lim dt (Avl(t)Avl(t + 2r)) -- Cv,(2r) = dfSv,(f) cos(4rfr) . (4.2.7)

Estimates of range rate v = e_ are made by averaging the differenced beat-frequency measurements

e(t) over times tm with some weight function h(t) [eq. (4.2.5)]. The mean-square error a_ _ in such

estimates is

(c)_ 1 dt Ih(t)l _ ([Ae(t)] 2)= lim [t,t2

''_~ c a/ IH(f)I 2 S_,(/) sin2(2r.fr)

(4.2.8a)
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2vo - vl(O) + v2(r). (4.2.8b)

Here H(f), the filter response function, is the Fourier transform of the weight function h(t), fe is

the receiver cut-off frequency, and eq. (4.2.7) has been used.

The noise-power spectral densities of most oscillators typically exhibit "flicker" frequency noise

at lower frequencies IS(f) oc l/f], white frequency noise at higher frequencies, and white phase noise

[S(f) oc f_] at still higher frequencies. Diode-pumped solid-state lasers, among the most promising

candidate frequency-stabilized lasers for space applications, typically exhibit white frequency noise

above about 100 kHz and flicker frequency noise, which is thought to be caused primarily by power

fluctuations in the pump laser, down to about 100 Hz. Below about 100 Hz, the noise curves for

some free-running lasers have been observed to roll over to a 1/v/'f dependence, rather than changing

to the expected 1/f 2 random-walk spectrum (Day, a al. 1990).

The filter response function H(f) should be chosen so as to attenuate the noise spectrum at

least as fast as the laser noise-power spectral density makes it rise. If, for example, the laser exhibits

flicker or white frequency noise in the detection bandwidth, a uniform weighting scheme, equivalent

to cycle-counting or "start-stop" phase measurements, might be adequate. Its frequency response

function isa sincfunction,

sin _rftm (uniform weighting) . (4.2.9a)
H(f)= _rffm

If the laser exhibits flicker or white phase noise [Su(f) oc f or f_, respectively] in the detection band-

width, a triangular weighting scheme might be more beneficial, equivalent to differencing contiguous

phase measurements averaged over periods try. Its filter response function is the square of that for

uniforming weighting (MacArthur and Posner 1985).

Diode-pumped Nd:YAG lasers have been operated with flee-running line widths as narrow
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as 100Hz on time scales of a few tens of microseconds, and 0.5 to 1 kHz on time scales of 1

to 10 ms, corresponding to short-term fractional frequency stabilities better than a few parts in

1012 (Kane, et al. 1987; Bush, et al. 1988). With feedback stabilization, similar lasers have been

operated with line widths of only a few hertz on time scales of 100 ms (Day, et al. 1990), and in

principle this can be improved by orders of magnitude (see discussion in section 2.2.3). Suppose then,

for illustration, that at frequencies above a few hundred hertz (on time scales shorter than a few

milliseconds), fluctuations in the laser frequency are small enough that they contribute negligibly

to the error in a measurement. Then, for two-way Doppler measurements over distances smaller

than about 100 km, the sine function in expression (4.2.8a) can be replaced by its argument. If the

measurements are weighted uniformly [filter response function given by eq. (4.2.9a)], the resulting

range rate measurement error is

\vo/ \t,n] Jo df S_,(f) [1- cos2xftm] . (4.2.9b)

The maximum error can be obtained by ignoring the part of the integrand proportional to cos 27rft,n.

Using the language of chapter 3 with (_vl)2 =_ f dvSv, (f), the range rate measurement error there-

fore is related to the fractional frequency stability of laser 1, the separation between SC (L _= cr),

and the measurement averaging time t,n by

(4.2.9c)

Here v0 in the denominator has been replaced with ul, a reasonable approximation since v << c.

Note that if the reference laser were not stable in frequency over the round-trip light-travel time,

the factor (r/tin) would be absent, and measurement precision could be considerably worse.
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4.2.2 Stochastic targets

Techniques for measuring the velocities of stochastic targets, such as dust particles (aerosols) en-

trained in wind, differ from those used on deterministic targets. In the most common technique, short

pulses are transmitted and ranges and range rates are inferred from the time delays of the received

(one-way or forward-scattered) or returned (two-way or back-scattered) signals. This technique

is referred to generally as Doppler radar, or Doppler lidar when performed at optical frequencies.

Figure 13 shows a schematic diagram of a coherent Doppler lidar system.

Doppler lidar measurements can be accomplished incoherently or coherently, i.e., with direct-

detection receivers or heterodyne receivers. Incoherent systems typically use high-resolution Fabry-

Perot etalons to convert intensity measurements into accurate Doppler-frequency measurements.

Coherent schemes compare the phase of the scattered signal with the phase of a reference oscillator

in a heterodyne measurement. Thus, in coherent schemes, measurement precision depends crucially

on the frequency stability of the oscillator. In principle, coherent schemes can measure Doppler

shifts more accurately, and under high-background conditions (e.g., scattered sunlight) they offer

superior spectral filtering. Some incoherent receivers that use combinations of interference filters

and scanning etalons to block background light are currently competitive with coherent systems

Comparisons among the different systems abound in the literature (see, e.g., Abreu 1979; Hays, et

al. 1984; Kane, et al. 1984; McDermid, et al. 1985; Menzies 1985, 1986; Rye 1989).

Coherent Doppler lidar systems can operate in a continuous-wave (CW) mode, rather than a

pulsed mode. Obtaining good range resolution is less straightforward than with pulsed sytems, in

which range resolution is determined by the pulse duration and can be shorter than a few hundred

meters. Range resolution can be achieved using an optical depth-of-focus effect (Huffaker 1978), or

the carrier can be frequency-modulated and range information extracted from the modulation fre-

quency in the scattered wave (Hinkley 1976). CW systems have the disadvantage of being restricted
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to ranges smaller than half the coherence length of the reference oscillator; for fractional frequency

stabilities of 10 -1°, the coherence length Crcoh = A(Sv/v) -1 for a 1-pm laser is only 10 km. The

discussion here will be restricted to coherent pulsed systems.

Coherent Doppler radar or lidar on stochastic targets is used for a variety of scientific measure-

ments, many in Earth's atmosphere. For example, coherent microwave radar has been used to study

the structure and development of storms by analyzing the scattering from raindrops (Ray, et al.

1975; Meneghini, et al. 1983), to monitor turbulence in clear air by sensing reflections from density

fluctuations (Doviak and 3obson 1979), and to measure wind velocity by studying the scattering from

dust particles (aerosols), which exist even in the "clearest" air (Post, el ai. 1981; Weinman 1988).

Coherent infrared lidar systems using carbon-dioxide (CO2) lasers operating at 10.6-pm wavelength

are being developed for wind-sensing applications, possibly operated from an Earth-orbiting satellite

or a space shuttle (Huffaker 1978; Harney 1983). Section 5.4 of this report compares the performance

of coherent Doppler lidars at 1-pro and 10-/Jm wavelengths for remote (satellite-based) wind-sensing

in Earth's atmosphere. Similar techniques could be used from spacecraft to probe regions around

planets and satellites or the interplanetary medium. Solid-state lasers operating in the 1-/_m range

have size, reliability, power output, and frequency stability that make them superior candidates for

lidar systems to be used in space.

The choice of wavelength for a Doppler lidar system can depend on many factors: achievable

velocity-measurement precision and range resolution; efficiency (including pulse energies required

to achieve a given performance and overall electrical-to-optical efficiency of the laser); practical

considerations such as the reliability, size, and lifetime of the laser and other components; and eye-

safety considerations. Some of the latter issues are addressed in section 4.2.2d and 5.4, but the

discussion here (subsection 4.2.2a-c) will focus primarily on achievable measurement precision.

The precision with which velocity measurements can be made with a pulsed coherent lidar
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system depends ultimately on the strength of the backscattered signal. For a given pulse energy,

the strength of the backscattered signal depends on wavelength/k in several ways. First, it scales

linearly with wavelength (because signal strength is defined in units of photon flux, not energy,

hence pulse energies must be divided by hv -- hc/_). Second, it depends on the backscatter cross

section/3, which is determined by the size, distribution, and possibly shape of the scattering particles

and which can have a complicated wavelength dependence (see subsection 4.2.2c). Third, it can be

degraded because of interference from background scattered light, an effect which becomes important

through the presence of turbulence. For aperture diameters D larger than the transverse atmospheric

coherence length P0, the degradation is approximately proportional to (2po/D) 2 [see eq. (4.2.25)

below; Clifford and Wandzura 1981; Clifford and Lading 1983]. In Earth's atmosphere, p0 oc A6/5

(approximately); thus, for a given aperture size D > 2p0 (at both wavelengths AI and _2), the

degradation at _1 = 1 pm is 250 times worse than at _ = 10 pro. This effect is important for

ground-based systems, but can be minimized with Earth-orbiting systems.

The strength of the backscattered signal often is not the limiting factor for measurement preci-

sion. In wind-sensing performed in Earth's atmosphere with coherent lidar, for example, the primary

error sources are (1) the spread in velocities of the scattering particles due to turbulent eddies and

bulk wind-shear effects and (2) the spectral width of the transmitted pulses. (Wind-sensing is

discussed in more detail in section 5.4.)

Subsection 4.2.2a below describes the dominant contributions to measurement error and re-

sulting limits to performance for velocity measurements made with coherent pulsed Doppler lidar

systems. Subsection 4.2.2b derives expressions for the strength of the return signal, neglecting ef-

fects of turbulence or wind shear. These expressions are combined with others in subsection 4.2.2a

to quantify achievable measurement precision for reasonable parameter values. Subsection 4.2.2c

discusses the backscatter cross section and its wavelength dependence, as well as effects of turbu-

lence. Subsection 4.2.2d summarizes requirements on laser technology for applications using coherent
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pulsed Doppler lidar.

4.2.2a Velocity- and range-measurement precision

Consider a stochastic target made up of randomly moving particles of various sizes, which exhibit

a range of velocities (standard deviation) _rrned due to wind shear, turbulence, or similar effects.

The precision with which the average (line-of-sight) velocity of the particles can be measured by a

coherent pulsed Doppler lidar system is limited by the strength of the received signal, the bandwidth

of the transmitted pulse, and the velocity spread of the target medium. In the heuristic language of

chapter 3, the first of these sources of measurement error corresponds to photon statistics, and the

second to laser frequency spread associated with the finite pulse duration. The third error source,

the uncertainty or spread in velocities of the target particles, is analogous to stochastic fluctuations

in an interferometer's arm length due to thermal or mechanical noise.

Conventional expressions for lidar velocity precision are based on radar analysis methods. The

treatment of measurement noise in the radar analyses is not optimum for optical frequencies and

photon-counting detection techniques, but in appropriate limits the methods lead to correct nu-

merical predictions. These discrepancies are pointed out briefly toward the end of this subsection

and in subsection 4.2.2b, and more appropriate expressions are indicated. Since the conventional,

complicated radar expressions are suspect, and since it is always satisfying to try to understand

complicated things in simple ways, this section continues in the spirit of previous chapters by deriv-

ing limits for velocity-measurement precision based on simple, heuristic arguments. (The results will

be surprisingly accurate, in the sense of agreement with the appropriate limits of the complicated

radar equation.)

In general, the rms error (standard deviation) a_ in a measurement of relative velocity (range
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rate)v made at wavelength A is related to the uncertainty 6v in Doppler frequency by

A

a_ -,, _ Sv . (4.2.10a)

This would imply that to achieve a range-rate accuracy a_, the fractional frequency stability of the

reference laser used to generate the pulses must be known to a level

6v 2a_
< --. (4.2.105)

i/ C

In Doppler measurements made with pulses, there is a minimum spread or uncertainty 6vbw in the

measured Doppler frequencies due to the finite spectral width associated with a pulse of finite du-

ration. The spectral widths associated with Gaussian pulses of duration (FWHM) rp or rectangular

pulses of duration rr are

_MbGw _ (2_.Tp)-I c rect > (/rTr)--I; O/_bw ~ " (4.2.11a)

Assume Gaussian pulses for the remaining discussion. The uncertainty in estimates of range rate

due to the spectral width of the transmitted pulse is therefore on the order of

O't/,bw _ 6_. = 0.15 m/s 1/Jm 0.3"M-"Uz)

> ( A 0.5m ~ 4xrp -_ 0.15 m/s 1 #m _'p /

(4.2.11b)

Note that this level of measurement error can be identified with an equivalent uncertainty in laser

frequency or fractionalfrequency stability:

O'v,bw //_Pb......_wv"_ 2o'.,bWc " 10-9 k,O._'m/s ' (4.2.11c)

If this is the dominant source of measurement error, it can be reduced by narrowing the spectral

width of the transmitted pulses, i.e., by improving the frequency stability of the reference laser.
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Increasingthe pulse duration also could reduce the pulse spectral widths, but such reduction must

be weighed against a loss in range resolution [eq. (4.2.14) below].

The measurement error caused by the velocity spread (standard deviation) O'med of the target

particles takes a little more thought -- it is not simply proportional to O'med. When Doppler

measurements are made with pulses, there is no getting away from error due to the finite spectral

width of the pulses. The result is that when the spread in velocities of the target particles is the

dominant source of error, the uncertainty in estimates of range rate is "shared" between O'med and

0"v ,bw :

O'v,med "_ (O'v,bw O'med) 112 - (4.2.12a)

The spread in velocitiesof the targetparticlesariseslargelyfrom the presence of turbulent eddies

and bulk wind-shear effects.In Earth'satmosphere, aerosolparticlesentrained in wind typically

exhibita spread in velocitiesam.d _ 0.4 m/s (Huffaker 1978; Kane, et al. 1984; Menzies 1986).

Combining thiswith expression(4.2.11b)for_v,bw impliesan errorin range-rangeestimates of

A _Vbw _med (4.2.12b)
a_,med --_0.25 m/s 1 _m 0.3 MHz 0.4 m/s

Note that the velocity spread of the particles implies a maximum time rcorr over which successive

signal samples are correlated:

(7"c°rr _--- 4_O'rned ---_ 0.2 Ds 1 vm amid ]"

This defines a coherent integration time or maximum appropriate detector integration time rd for a

single measurement.

Consider now the contribution to measurement error from photon statistics. If a pulse returns

with a Doppler shift up, and heterodyne detection is used to measure the phase relative to a stable

reference oscillator, the uncertainty in that phase measurement will be related to the uncertainty _UD
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in the Doppler frequency by 6¢ _, 2_'rp6VD. Recall that the minimum uncertainty 8¢ is related to the

standard deviation of the detected photocount N by _¢ > 1/(2aN) _ 1/(2v/'N) [see eq. (3.4.1a) and

surrounding discussion]. The approximation aN _ v/N ", where N is the mean integrated photocount

(Poisson statistics), is reasonable for most of the applications described here. This is because signal

strengths typically are large compared to the noise powers associated with intensity fluctuations no_

of shot-noise origin, such as detector dark current, additive thermal noise, or background scattered

photons. The resulting error in range-rate estimates is

A A 8¢ph > A ~ a_,b_

a_,ph ~ _%h = 2 2rrp ~ 8_rpV_ -- 2V_

= 0.08m/s l#m 0.3MHz'

(4.2.13)

A derivation of the received signal strength N is given in subsection 4.2.2b; for ranges, pulse energies,

and receiver/detector sizes and efficiencies typical of many experiments in Earth's atmosphere, and

a backscatter coefficient appropriate for 1-#m wavelengths in Earth's middle troposphere, N can be

as large as 20 to 100.

Two furtherquantitiesare important for definingthe performance of a lidarsystem. Firstis

the range resolutionaL, definedby

cMrr ~ 75m(M0._s) (4.2.14)aL = 2 --

Here rp is the pulse duration, and the multiplicative factor M accounts for additional sources of

uncertainty in measurements of pulse arrival times, including the response time rdet of the detector

and the characteristic time rsc for optical interaction with the scattering particles. The combination

of these effects determines an optimum range "gate" rg = Mrp or duration of the sampling window

for comparing returning pulses with pulses from the reference oscillator. The second important

quantity is the maximum range rate or maximum Doppler shift expected. If the maximum Doppler
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shift to be detected is f, then one must sample the backscattered light at this frequency, and the

detector bandwidth should be at least as wide as f. This will permit unambiguous measurements

of range rate up to a maximum range rate vNy (the "Nyquist" velocity) given by

VSy -- fA/2 = 50 m/s 100_¢IHz " (4.2.15)

The expressions derived above for range-rate error or velocity-measurement precision are correct

qualitatively and agree well with those obtained from the Doppler radar equation in the limits where

each of these error sources dominates. For target velocities that exhibit a Gaussian distribution, the

Doppler radar expression for the uncertainty in a single measurement of velocity is

a_ = 4_rl/4 \Mrp/ W + SNRw + 2-'_'\_/ (4.2.16a)

(see, e.g., Huffaker 1978; Kane, et ai. 1984; Menzies 1986; Zrnic 1979). When care is taken to define

signal-to-noise ratios in ways appropriate for optical rather than radio frequencies (as described in

subsection 4.2.2b), this expression can be used to describe the performance of coherent Doppler

lidar systems under general conditions. Here SNI_ is the "wideband" signal-to-noise ratio, shown

in subsection 4.2.2b to be related to the number of detected photons N by

SNP_ 2 __ (2frp)N (4.2.16b)

[see eq. 4.2.24c)], where f is the sampling frequency (f __ rbd, where bd is the spectral interval over

which detected photons are integrated), and rp is the pulse width. The quantity W in eq. (4.2.16a)

is the fractional Doppler frequency spread of the return signal due to the spread in target velocities

and the finite pulse bandwidth:

1.._( _0W -: Crmed2 ÷ abw2) 1/2 -- ,
YNy VNy
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where the symbol a0 has been introduced to stand for the root-sum-square (rss) of the scattering

particles' spread in velocities and the velocity-measurement error due to the pulse spectral width

[eq, (4.2.11b)]. The numerical value of the factor g in the third term of eq. (4.2.16a) depends on

the method of numerical analysis used; g = 1 for a comp]ex-covariance method of estimation (based

on maximum-entropy spectral moments), and 9 = 2_r2/3 for a Fourier method of estimation (based

on variance of the Fourier power spectral moments) (see Zrnic 1979). It will be assumed here that

g =- 1. The quantity Mrp is the range gate defined in eq. (4.2.14) above. Note that improvement in

accuracy by a factor of order N -1/2 can be achieved by averaging N independent measurements.

To make the complicated radar expression (4.2.16a) more tractable, rewrite it in terms of the

three contributions to measurement error derived earlier. Measurement precision a, thus is found

to be the rss of three quantities,

a_ = (A _ + B 2 + C2) 1/2, (4.2.17a)

with A, B, and C defined as follows:

A ___ o_ [ffv,bw 4 -Jr- O'v,med4] 114 = a (a0 _,b..) 1/2 = a *_,bw [1 + (rp/rco.)2] 1/4 ,

2{r 0

B _ _3/4 Nil4 ' (4.2.17b)

O'v,bw

C = a_,ph = 2N1/2 ,

where

a ----(r/4) 1/4 _ 0.94, -- 2fv_, (4.2.17c)

and M has been set equal to unity (i.e., re =__rp). Except for the (puzzling) factor B, the heuristic

expressions derived earlier for the'separate contributions to measurement error from pulse bandwidth

(_%,bw), spread in scattering-particle velocities (a_,med), and photon statistics (av,ph) agree extremely

well with this expression. The terms A, B, and C are evaluated quantitatively in section 5.4
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for comparablelidarsystemsoperatingat 1-#m and 10-pm wavelengths, with system parameters

appropriate for the application of global wind-sensing. For typical system parameters, the B term

will make a negligible contribution relative to the A or C terms, and the simple expressions derived

at the start of this section will be good indicators of performance. Note, too, that B is the only term

in this expression that has an explicit dependence on sampling frequency, and it can be suppressed

by use of an appropriately high sampling frequency f.

Note the following interesting feature about the expressions (4.2.17) for velocity-measurement

precision: a longer pulse duration rp would appear to reduce the error contribution from all three

terms. Of course, any such improvement would come at the expense of poorer range resolution

(at. ",, crp/2), so in practice the optimum pulse width will represent an acceptable compromise

between range resolution and velocity-measurement precision. This observation does not support the

"conventional wisdom" that says no benefit comes from having pulses rp longer than the correlation

time rcorr set by the spread of velocities in the scattering medium (i.e., from reducing av,bw below

crmea (see, e.g., Menzies 1986). The correlation time rcorr does define a coherent integration time,

which defines a maximum detector integration time rd and thus limits the detected photocount N.

A general question of interest is, for what ranges of signal strength (N) will the terms A, B,

or C contribute appreciably to measurement error? Examination of eq. (4.2.17b) shows that A

is always at least as large as ,rv,bw , and (7 can be larger than ev,bw only for N < 1. Thus, A

always dominates (7 except in the extreme photon-statistics-limited case in which there is less than

one detected photon per integration time (over the entire detection bandwidth). In terms of the

quantities Y = 47rW = 4_rcr0/vNy and _ defined above, the relative magnitudes of A, B, and (7, will
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be determined by the following conditions:

A > B ¢* _N > 4Y 2 __ y2.,

A > C ¢_ _N > y-1 _-2 y-X. (4.2.18)

B > C ¢_ _N > y-4.

For a lidar system operating at a given wavelength, only three parameters need be assumed in order

to evaluate the quantities A, B, and C as functions of the number of detected photons N: the

spread in velocities of the scattering particles (amed); the maximum relative velocity (range rate) to

be measured (VNy); and the pulse duration (rp). From these one can infer the quantities o'v,bw , 0r0,

and the sampling rate f. In turn, this establishes values for the above-defined quantities Y and _.

Table 4.2.1 lists operational parameters for 1-#m and 10-/_m lidar systems, assuming pulse widths

rp = 2/is, a Nyquist velocity VSy = 50 m/s, and a spread in particle velocities 0rmed = 0.4 m/s. The

terms A, B, and C are evaluated as functions of the number of detected photons N. With these

assumed parameters, neither tabulated case is photon-statistics limited (provided, of course, that

the integration time is long enough that N > 1), and measurement precision for each is set by the

term A.
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Table4.2.1 Operationalparametersfor ), = 1 #m and A = 10 #m lidar systems, based on assump-

tions of pulse width 7"p= 2 ps, Nyquist velocity VNy = 50 m/s, and spread in velocities

of scattering particles timed = 0.4 m/s. The range resolution for both systems, assum-

ing a range gate rg equal to the pulse width rp, is crp/2 __ 300 m. See eqs. (4.2.17)
for definitions of A, B, and C. Fourier-transform-limited Gaussian pulses are assumed

[Crbw =-- (A/2)6Vbw = A/(4_rrp)].The detector integration time ra has been set equal to
the correlation time Vcorr - A/(47rCrmed), and is therefore 10 times larger for the 10-#m

system.

Parameter A = 1 /_m A = 10/_m

O'v,bw

O"0

rg
f
Y _ 471"O'0/VNy

- 2frp
A

B

C

0.04 m/s

0.4 m/s

0.2/_s
100 MHz

0.1

8OO

0.12 m/s

O.O05/N 114 m/s

O.02/N 1/2 m/s

0.4 m/s
0.57 m/s

2.0 #s
10 MHz

0.13

8O

0.45 m/s

O.04/N x/4 m/s

0.2IN U2 m/s

To achieve a velocity error a_ smaller than 0.5 m/s with the 10-pm system or better than 0.1 m/s

with the 1-/Jm system, the term A must be reduced. This requires reducing either arned or O'v,bw

[eq. (4.2.17b)]. Typically, one has no control over the velocity spread O'med of the scattering medium;

hence, one must reduce av,bw. If the reference laser used to generate the pulses is essentially perfectly

stable in frequency and the (Gaussian) pulses are Fourier-transform-limited -- i.e., the pulse spectral

width is due entirely to the finite duration of the pulse -- then _v,bw = A/(47rrp) [eq. (4.2.11b)],

and improvement is possible only by increasing the pulse duration rp. Of course, this will degrade

range resolution [eq. (4.2.14)]. In general, the pulse spectral width &tb w may be considerably wider

than (27rrp) -1, which is due in part to frequency instabilities in the reference laser used to generate

the pulses; thus, ¢rv,bw --_- (._/2)_/./bw > A/(4rrp). In the current example, what pulse spectral width

is required to reduce term A by 50%, i.e., to give an error of about 6 cm/s for the 1-/Jm system

and about 25 cm/s for the 10-/_m system? Note that reduction beyond these values could make

term C start to contribute (the number N of detected photons in an integration time is assumed
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to be on the order of 1 or more). Such a reduction requires that a_,bw be reduced by a factor of

4, to -_ 1 cm/s for the 1-pm system and to .., 10 cm/s for the 10-pm system. These correspond to

pulse spectral widths of about 20 kHz for each system, requiring pulse durations of at least 8 ps,

and reference-laser frequency stabilities of ._ 7 x 10 TM and _- 7 x 10 -1° for the 1-pm and 10-pm

sources, respectively. Note that for the 10-pm system to achieve an accuracy comparable to the

6-cm/s accuracy of the 1-pm system (assuming N >> 10, so that the A term still dominates the

B and C terms), its pulse spectral width would have to be on the order of 2 kHz, requiring a pulse

duration on the order of 100 ps and a reference-laser frequency stability of 7 x 10 -11.

In some cases, the figure of merit in terms B and C may not be the required number of detected

photons, but rather the pulse energy, for example. To compare systems at different wavelengths

in these more general ways, one must know how N scales with wavelength. As shown in subsec-

tion 4.2.2b, it depends linearly on wavelength through the detector integration time rd [eq. (4.2.12c)]

and the number of photons per pulse Ep/hu; it depends on wavelength in a more complicated way

through the backscatter coefficient/3 and the overall efficiency y. The detector integration time rd

is limited by the correlation time rcorr -_ A/4_ramed- The efficiency r/includes effects of propagation

losses (e.g., absorption) as well as receiver and detector efficiencies; for simplicity here, assume _ is

approximately constant for the wavelengths being compared. Hence for a given minimum required

number of detected photons, the minimum required product of pulse energy Ep and backscatter

coefficient/3 will be 100 times higher for the 1-pm system than for the 10-pm system. However, if

the scattering particles are smaller than 1 pm, and Rayleigh scattering applies, the backscatter co-

efficient will scale as A-4; hence the minimum required pulse energies will be 100 times lower for the

1-pm system than for the 10-pm system. Thus, there is always an advantage (in terms of improved

velocity-measurement precision for given pulse energies) to using shorter wavelengths, as long as

Rayleigh scattering still applies, i.e., as long as the wavelength is still longer than the characteristic

size of the scattering particles. Conversely, for particles large relative to the laser wavelength (the
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geometric-opticsscattering limit), the backscatter coefficient is relatively insensitive to wavelength,

and better measurement precision can be achieved for given pulse energies with longer wavelengths.

Further performance trade-offs between 1-/2m (Nd:YAG) lidar systems and 10-#m (CO2) lidar sys-

terns are discussed in subsection 4.2.2d, and in more detail in section 5.4 for the application of global

wind-sensing.

The above discussion has quantified to some extent the statement made in the introduction

to this section that the use of shorter wavelengths (e.g., 1-pm instead of 10-/_m lasers) offered the

potential for better measurement precision. Now that their validity has been assured, the simple

expressions [eqs. (4.2.11-13)] can be used to justify this claim in a general way by considering the

trade-offs between velocity-measurement precision and range resolution for different wavelengths

and comparable signal strengths N. When the uncertainty in measured velocity stems primarily

from the transmitted pulse bandwidth [eq. (4.2.11b)], the product of velocity uncertainty and range

resolution scales linearly with wavelength:

o'v,bw aL o( A. (4.2.19a)

When the velocity uncertainty is due primarily to the spread in target velocities [eq. (4.2.12b)], mea-

surement precision improves only as the square root of the wavelength for a given range resolution:

O'v,me d O'L 1/2 O( ()t O'med) 1/2 . (4.2.19b)

This A1/2 dependence can be understood as improvement in precision of the measured Doppler

shift by the inverse square root of the number of cycles counted; for a particular range gate or

measurement integration time, more full cycles of return signal are received at shorter wavelengths.

Finally, if photon statistics are the dominant error source [eq. (4.2.13)], then, for a given number

of detected photons N, the product of velocity precision and range resolution scales linearly with
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wavelength:

A
O'v.ph _'L 0(. Nll2 . (4.2.19c)

4.2.2b Received signal strength

The previous discussion indicated the role played by photon statistics (or signal-to-noise ratio, or

received signal strength) in the performance of coherent lidar systems. For quantitative examples,

it assumed that the signal was strong enough to ensure that at least one signal photon would be

detected per integration time (N >_ 1). This subsection examines signal strength more closely, and

shows under what conditions the assumption N > 1 is reasonable.

The flux s of backscattered "signal" photons arriving at the detector (units of s -1) is given

approximately by

c E_2. A,s = 7. (4.2.20a)

Here Ep is the pulse energy,/_ is the volume backscatter coefficient (in units of m -1 sr -1 throughout

this section), Ar is the receiver area, L is the range, and T]is an overall efficiency that includes such

factors as system optical efficiencies, detector quantum efficiencies, and the two-way transmission

(at wavelength A) along the path between the lidar and the medium. The backscatter coefficient is

discussed in subsection 4.2.2c. In general, this would be an integral equation with/_ and _/functions

of the range L and the pulse energy Ep replaced by the product of the pulse width rp and the

temporal power profile of the pulse evaluated at a time 2L/c prior to the measurement. Equation

(4.2.20a) is valid if these dependences on range can be ignored, and the pulse width is small compared

to the round-trip light-travel time. The factor of 1/2 reflects the fact that the signal arises from

a slab of target medium of thickness CVp/2. A typical value for /_ in Earth's atmosphere might be

10 -8 m-lsr -1 (see section 5.4). With this value for/_, pulse energies of 100 mJ, an overall efficiency

7}_ 0.1, a range L __ 10 km, a 0.4-m diameter circular receiver aperture (At - _rDr2/4), and a 1-tLm
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laserwavelength,thesignalphotonfluxwould be s _ 108 s--l; it scales for different parameters as

s ,,, 10Ss_l (0E _ A /3 r/) ( Dr 10km) _1/Jm 10 -8 0.1 b_m - (4.2.20b)

It is useful to decompose the signal flux into its spectral components _(v) = _, which have units

of s -I Hz -1. If the backscattered signal photons arrive with a uniform spread in frequency over a

bandwidth Bsig, the spectral flux of arriving signal photons is

---- s/Bsig. (4.2.21a)

[A "tilde" (--,) above a quantity indicates a Fourier component.] The signal spectral width B_ig is

related to the velocity-measurement error a_ by

Bsig _, (2)o'v. (4.2.21b)

If velocity error is not dominated by photon statistics, but rather by a combination of the pulse

spectral width and the spread in particle velocities, a good estimate for Bhig can be made by setting

av equal to term A in eq. (4.2.17a). Provided the pulse width vp is not very much longer than the

correlation time rcorr [eqs. (4.2.12c) and (4.2.17b)], one finds that

Beig ,,_ (2_rT-p)-1 " (4.2.21c)

"Noise" photons, consisting of detector thermal and dark-current photons and background

backscattered photons, are also counted by the detector, and arrive with a spectral flux denoted

here by ft. A useful quantity known as the "narrowband SNR" can be defined without reference to a

particular detector. It is equal to the ratio of the mean spectral flux of photons at the detector, ha, to

its standard deviation, er,_. Under the assumptions that (1) the signal photons (backscattered laser
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light)obey Poisson statisticsand (2) the noise photons behave statisticallylikeadditivethermal

noise,itcan be shown that the mean spectralfluxof photons at the detector and itsstandard

deviation are given by

nd= .s+fi,

= [_(1 + 25) + fi(fi + 1)] 1/2

(4.2.22a)

(4.2.22b)

(Schumaker 1984, 1989). If the spectral flux of noise photons is much smaller than that of signal

photons (fi << _, with _ > 1), the standard deviation of the detected spectral flux can be simplified

to

aa, -_ [_(I+ 2fi)]i/2. (4.2.22c)

In thislimit,the narrowband SNR takeson itsconventional"Poisson" character:

SNI_ : _d --__i/2 [1- (fi/_)2]_ _I/2. (4.2.22d)
O'fij

If the detector has a rectangular response function (corresponding to a uniform weighting of the

measurements, or cycle counting), the total number of signal photons detected in an integration

time rd (rd < rp) is

N_vdS = Bsigrd_- (4.2.23a)

The narrowband SNR thus is related to the square root of the total number of detected signal

photons by

SNRn _- \_/

The narrowband SNR gives the ratio of signal power density to noise power density at the signal

(laser) frequency. In practice, because of turbulence and shear effects (amed), the signal energy is

spread over a range of frequencies. Because of this, it is conventional to define a "wideband" SNR,

obtained from statistics of the detected photon flux averaged over a spectral interval bd related to

the sampling frequency f by bd _ fir. The mean flux nd of detected photons in each spectral bin
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(unitsofs-x) anditsstandarddeviationarerelatedto thespectralquantitiesdefinedineqs.(4.2.22)

by

ThewidebandSNRisgivenby

nd = bd rid,

(4.2.24a)

nd ( bd _112N 112SNR,, _= - (bard)'l_ SNR. "_ . (4.2.24b)

Setting bd = fir and B,ig = (21rrp) -t [eq. (4.2.20c)], one finds the following relation between

wideband SNR and number of detected photons:

SNI_ _ (2fry) 112 N '1_ . (4.2.24c)

This relation was used in subsection 4.2.2a [eq. (4.2.16b)] to rewrite the complicated radar equation

for velocity-measurement precision in terms of the quantities amid, a_,bw, and N. For the parameters

indicated in eq. (4.2.20b) and in Table 4.2.1, appropriate for a 1-pm coherent lidar system, the

number of detected photons per integration time and the wideband signal-to-noise ratio are

N " 20, SNRw "" 90. (4.2.24d)

4.2.2c Backscatter cross section and effects of turbulence

The strength of the returned lidar signal depends linearly on the cross section for backscattering at

the lidar wavelength. The backscatter volume cross section fl (m -1 sr -l) depends on the size of the

scattering particles. For Rayleigh scattering, where particle sizes are smaller than the wavelength,

the cross section scales as A-4. For particles considerably larger than the wavelength (the "geometric
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optics"regime), the scattering has a very weak dependence on wavelength. For particles on the order

of the wavelength ("Mie scattering"), the wavelength dependence is less pronounced than in Rayleigh

scattering and does not have a simple analytic form, except when the distribution of sizes follows

a simple power-law (the "Junge" model) (Hinkley 1976). Typically, in this case, the cross section

still grows with shorter wavelength. For example, in Earth's atmosphere, the scattering particles

comprising most of the aerosol mass are approximately 1 pm in size. Because Rayleigh scattering

would not apply for a 1-pro laser, the ratio of backscatter at 1 pm to backscatter at 10 lain is far less

than 10,000--typically in the range 40 to 200 (Kane, et al. 1984). Some discussion of the backscatter

cross section at 1- and 10-pro wavelength for Earth's atmosphere appears in section 5.4.

Signal strength is maximized by using high pulse energies and choosing wavelengths that max-

imize the backscatter cross section. It is equally important that interference from background

scattered light be minimized. The amount of background light received depends on the number of

spatial modes seen by the receiver (i.e., the receiver field-of-view). In the absence of turbulence,

if the receiver is diffraction-limited (one spatial mode), the amount of background light detected is

independent of aperture size; thus, one should use a large, diffraction-limited aperture, so that max-

imum signal is collected from a single diffraction-limited spot on the focal plane. However, when

turbulence (refractive-index fluctuations) is present, the signal power collected in a single spatial

mode stops increasing with receiver area when the aperture size D approaches the transverse coher-

ence length P0 of the turbulent medium in the focused beam, because more and more background

light interferes. (Note that it is turbulence immediately in front of the telescope that is important;

turbulence in the scattering medium has no effect, since the scattering process is incoherent.) To a

good approximation, the reduction in signal strength due to turbulence in the focused beam can be

described by the factor (Clifford and Wandzura 1981)

1

rlturb _" 1+ D2/4po 2" (4.2.25)
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In Earth'satmosphere, P0 o( 16/5. Thus, for example, the coherence length at 10 pm is -,_ 15.8

times longer than at 1 pm, and, as noted earlier, for a given aperture D > 2p0, the degradation at

1 pm is ,-_ 250 times worse than at 10/_m. Signal loss due to turbulence is an important problem

for ground-based systems and may result in the need to collect signal in several different spatial

modes. The effect is more important at shorter wavelengths, both because of the shorter transverse

coherence length of the atmosphere, and because the diffraction-limited spot size is smaller (the

area of the latter scales as )_). The negative effects of turbulence can be minimized by using small

apertures and essentially eliminated by using a system in Earth orbit.

4.2.2d Laser technology requirements

The application of coherent pulsed Doppler lidar poses several challenges to laser technology. (1) A

frequency-stabilized, low-power reference laser is needed to ensure that the frequency at which the

pulses are transmitted does not fluctuate or drift appreciably over the round-trip light-travel time.

This laser serves both as a regulator for the transmitted pulses and as a local oscillator for heterodyne

detection of the returned signal. (2) Pulses from the low-frequency reference laser must be amplified

to produce high pulse energies, and these must be produced at high repetition rates. (3) The

reference-laser frequency must be tunable over a wide range to compensate for Doppler shifts due

not only to relative motion of the scattering particles but, more importantly, to the potentially large

relative velocities encountered with an orbiting spacecraft.

A system designed to have a velocity-measurement error under --- 0.5 m/s must have a reference

laser whose fractional frequency stability is on the order of 10 -9 or better, i.e., well under 1 MHz

at 1-pm wavelengths. For a range of 15 km, this stability must hold for at least 100 psec. Pulse

energies of at least a few hundred millijoule are desirable, at repetition rates up to several tens of

hertz. The tuning requirement imposed by the velocities of the scattering particles alone is mild:
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at 1-pm wavelength, scattering particles with velocities of order 1 m/s produce Doppler shifts of

order 2 MHz. However, for systems in Earth orbit, the relative velocities between spacecraft and

scatterers can be large and the tuning requirement severe: the Doppler shift at 1-pm due to an

orbiting spacecraft with a 7.2-km/s ground velocity and an observation angle 10 ° from the vertical

is approximately 2.5 GHz. Use on satellites, e.g., for Earth remote sensing or wind-sensing, also

requires that the lasers be efficient, reliable, and long-lived, such that they can operate unattended

for several years.

Solid-state lasers in general are excellent candidates for use with Doppler lidar. They provide

spectral coverage from 0.8 pm to about 3.5 lain and can be frequency-doubled to serve at shorter

wavelengths, in contrast to dye lasers, which do not operate in CW mode at wavelengths longer than

about 1 #m. Better frequency stabilities can be obtained with solid-state lasers than with dye lasers.

In solid-state lasers, the primary cause of frequency instabilities is refractive-index fluctuations due

to variations in pump power or ambient temperature; these are lower in magnitude and typically

occur at lower frequencies than the frequency jitter caused by flowing dye streams. Solid-state

lasers are more reliable and longer-lived than dye lasers (infrared laser dyes also tend to degrade

quickly because of thermal decomposition); when pumped with diode lasers (as opposed to flash

lamps), their overall electrical-to-optical efficiencies have been made as high as 10% (Byer 1988).

Eye-safety considerations point to lasers that operate at wavelengths longer than about 1.4 pro, a

regime accessible by a variety of solid-state lasers currently under development (Moulton 1987).

Among the strongest candidate solid-state lasers for applications such as remote sensing and

laser backscattering measurements in Earth's atmosphere are alexandrite and titanium sapphire

lasers ((Moulton 1987). Alexandrite lasers operate in both CW and pulsed modes between 0.7 and

0.8 pm (roughly); titanium sapphire lasers can operate over a broader wavelength range, roughly

0.65 through 1.2 pm for pulsed operation and a slighly narrower range for CW operation. For longer-

wavelength operation, from about 1.5 to 2.5 pm, cobalt magnesium-fluoride (Co:MgF2) lasers are
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good candidates. Alexandrite lasers have been used to measure water vapor and oxygen concentra-

tions in the atmosphere (0.726 and 0.760 pro, respectively). They typically produce pulse energies

of 1 to 200 mJ at 10-Hz repetition rates, although they have been made to produce pulses of 0.5 J

at 250-Hz repetition rates for more demanding applications such as laser isotope separation (Moul-

ton 1987). When pumped by frequency-doubled neodymium lasers (_, 0.5-pro wavelength), which

in turn are pumped by laser diode arrays, tita_lium sapphire lasers are among the most efficient,

reliable, and broadly tunable of all solid-state laser systems. Their tuning range is broad enough to

serve a variety of remote sensing applications, e.g., they can detect both the 0.726- and 0.938-#m

water bands, as well as the 0.T60-pm oxygen band (Hinkley 1976). These lasers can produce 1-J

pulses at 10-Hz repetition rates.

For specific applications in which such broad tunability is not required, the preferred solid-

state lasers are typically neodymium- or holmium-doped crystals or glasses. Neodymium-doped

YAG lasers, for example, which operate at 1.06 pro, have been developed extensively in recent years

because of their potential for a wide variety of scientific uses, especially for space-related applications.

Low-power (< 400 roW) Nd:YAG ring lasers operated in special nonplanar configurations have

exhibited single-mode operation and free-running line widths as narrow as 100 Hz on time scales of

a few tens of microseconds, 0.5 to 1 kHz over times of 1 to 10 ms, and several tens of kHz for times

up to 1 second (Kane, et ai. 1987; Bush, et al. 1988; Nilsson, et al. 1989). High peak powers can be

obtained using multipass Nd:YAG or Nd:glass slabs as amplifiers. These can produce pulse energies

of 1 to 10 J at repetition rates up to 100 Hz (Byer 1988; Fan and Byer 1988; Reed, et ai. 1988).

Acousto-optic modulators are used to chop the amplified beam into pulses a few microseconds in

duration and to produce the desired frequency offset to compensate for the Doppler shift of the

return signal. These lasers can be tuned easily over ranges of several tens of GHz (Byer 1988; Fan

and Byer 1988). They are small and light (low-power diode-pumped versions, tunable over 20 GHz,

weigh much less than 1 kg), rugged, and reliable. When pumped with small diode lasers instead
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of flashlamps,the Nd:YAG lasers are more efficient than CO2 lasers (approximately 10% vs. 5%)

and offer longer operating lifetimes (Kane, et ai. 1987; Byer 1988; Fan and Byer 1988). However, a

potentially important practical drawback to the use of 1-pm Nd:YAG lasers for some applications

is the eye-safety problem: ANSI recommendations would limit pulse energies to about 40 mJ with

a 1-m diffraction-limited telescope (Menzies 1986; Sliney and Wolbarsht 1982). Development is

under way of solid-state lasers with the desirable characteristics of Nd:YAG but at slightly longer

wavelengths. Holmium-doped solid-state lasers, which operate at 2/_m, are a possible alternative

candidate currently being explored. Further discussion and comparison of different lidar systems

for the application of wind-sensing by Earth-orbiting spacecraft can be found in section 5.4, and

references therein.
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5. SCIENCE EXPERIMENTS REQUIRING STABILIZED LASERS: EXAMPLES

5.1 Metrology for astrometric and imaging interferometers

Laser interferometers have obvious important practical application for instrument metrology. Use

of a sensitive laser metrology system to calibrate or control the relative motions and distortions of

elements within an instrument or measuring apparatus can enable much better measurement ac-

curacy than could be achieved by depending only on mechanical rigidity and thermal isolation for

instrument stability. One kind of scientific instrument that demands very precise metrology is a

phase-coherent optical interferometer for astrometry or astronomical imaging purposes. In contrast

to amplitude or intensity interferometers, which make visibility measurements of the interference

fringes, phase-coherent interferometers actively control the relative path lengths of the interfering

beams in order to maintain high fringe visibility. On the ground, atmosphere-induced phase fluc-

tuations limit angular resolutions to a few milliarcseconds, even for very bright astronomical point

sources (Shao, el al. 1987, 1988). In space, microarcsecond astrometry and 100-microarcseeond

imaging resolution on fairly dim objects are thought to be achievable with modest-size instruments

(2- to 20-meter baselines), but they require that sytematic errors, particularly those associated with

knowledge or control of the optical path lengths in the interferometer, be reduced to the level of

photon-statistics error (Rea_enberg 1986; Reasenberg, et al. 1988; Shao, el al. 1988).

Figure 14 is a simplified diagram of the way in which such an interferometer and its laser

metrology system might work. Starlight arriving at an angle 0 relative to the interferometer axis

arrives at the two telescopes with a relative delay. From the telescope primary mirrors, the received

light signals are guided to and combined at a beam splitter. Fringes, corresponding to constructive or

destructive interference between the beams, are formed as the delay changes by amounts comparable

to a wave period. The delay depends on the position of the star relative to the interferometer baseline;

once the baseline orientation is calibrated, the angular positions of stars can be measured.
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Thewider the optical bandpass of the system, the stronger is the detected signal, and hence

the more precisely the delay can be measured. However, since the fringe intensity pattern is propor-

tional to the Fourier transform of the optical bandpass, a wider optical bandpass means a narrower

interference pattern (fewer fringes). In order to track these fringes and maintain high visibility,

the relative path lengths from mirror to beam splitter must be controlled or monitored to a small

fraction of a wavelength. To achieve angular precisions comparable to that determined by photon

statistics, this "small fraction" should be as small as 10 -4, i.e., tens of picometers.

For a nominal baseline length L and equal paths from mirrors to the beam splitter, the path-

length difference for starlight arriving at an angle/9 is L sin O. Adjacent fringes correspond to changes

in this difference by one wavelength; hence the angular spacing between fringes is

(10m ;t "_ 10 mas (5.1.1)
- Lcos0 0.5 \Lcos0]

("mas" is milliarcseconds). Achievement of the microarcsecond angular precision desired of these in-

struments clearly requires some serious fringe-splitting. If the relative path lengths from the primary

mirrors to the beam splitter could be controlled perfectly, and other sources of phase fluctuations

at the detectors (e.g., scattered light) were negligible, photon statistics would limit angular preci-

sion to O'ph _ O/(47rv_), where N is the number of detected signal photons [eqs. (3.4.1)]. Recall

that a 10-minute observation of a star of apparent visual magnitude 10 with a I-meter telescope

and 2% overall optics and detection efficiency over a detection bandwidth (wavelength) from 0.5

to 0.6 /Jm will produce a mean detected photocount N of about 10 million photons [eq. (3.4.3)],

hence a photon-statistics path-length error of about 13 pm, or about 0.3 microarcsecond over a

10-m baseline. To achieve 1-microarcsecond measurement precision with a nominal 10-m baseline

would require real-time control of (uncorrelated) fluctuations in the relative path lengths to better

than 50 pm. Interferometers this ambitious are being studied seriously for eventual use in Earth

orbit (Reasenberg 1986; Reasenberg, et al. 1988; Shao 1988).
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How realistic are these requirements of picometer-level control of relative path lengths? It

is shown below that the demands on laser frequency stability to achieve this level of metrology,

in principle, are not extreme, provided scattered light can be minimized. However, thermal and

mechanical noise, which produce distortions and fluctuations in the shapes and positions of the

optical elements, are likely to pose serious challenges.

Refer again to Figure 14 and its accompanying description, which shows in a simplified way

the general function of a laser metrology system for an optical interferometer. The requirement

on laser fractional frequency stability is minimized by the use of a dual-arm configuration for the

metrology interferometers used to measure and control the relative path lengths. If the path lengths

are held equal to a fraction f, the fractional frequency fluctuations of the laser must be controlled

or calibrated at least to the level dr�f, where a is the desired angular measurement precision:

u - f _ 5 x 10 -9
(5.1.2)

As explained in section 3.4.2, a dual-arm configuration doesn't help overcome the effects of scattered

laser light, since the statistics of scattered light are not correlated in the two arms. If the scattered

light arriving at the beam splitter carries an intensity equal to a fraction e,0 of the main beams, the

requirement on laser fractional frequency stability (or knowledge) to achieve an angular precision dr

is

_v dr

-- = -- (5.1.3)
V _ac

[see eqs. (3.4.6)]. In practice, the factor e,0 typically can be kept to 0.1% or smaller with modest

effort, implying a requirement on laser frequency stability no worse than _u/u __ 2 x 10 -1° for 1-gas

angular measurements.

The laser metrology systems in these interferometers are designed to monitor the average

changes in path lengths due to motions and distortions of the optical elements over time scales
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that rangetypicallyfrom10minutestoseveralhours.Hencefluctuationsoccurringonshortertime

scales,suchasmechanicalvibrations,donotneedtobetracked,andthemetrologyservoscanhave

narrow(-,_millihertz)bandwidths.(Contrastthiswith themuchmorestringentrequirementsfor

ground-basedlaser-interferometergravitational-wavedetectors,in whichfluctuationsontimescales

of millisecondsareimportant;seesection5.2.)Ofcourse,themetrologymeasurements,whilevery

precise,still providebiasedmeasurementsof theangle0. Each optical element introduces its own

bias, and the overall measurement bias will vary with time and must be calibrated and corrected

for in the data analysis. The time scales over which the metrology bias and related errors can be

tolerated will depend on the throughput of the instrument - i.e., the rate at which measurements can

be performed as well as the precision of each measurement. To provide significant science return in

mission lifetimes under 10 years, it is reasonable to expect that a space-based astrometric or imaging

interferometer should be able to make enough measurements to estimate instrument bias parameters

and star positions to the desired precision several times per day (Reasenberg, et al. 1988). In this

case, linear, slowly changing instrument biases (time scales of several hours) could be accepted.

Although long-term linear changes in measurement bias can be tolerated, requirements on ther-

mal and mechanical stability of the interferometer elements (including both starlight and metrology

mirrors, retroreflectors, and beam splitters) are still severe on time scales of l0 minutes to several

hours. Thermal-induced distortions of the optical elements can arise from local thermal gradients

or nonuniform coefficients of thermal expansion. Commonly used glasses such as zerodur and ULE

typically have linear coefficients of thermal expansion of about 3 x 10 -s K-1 in temperature ranges of

10 to 50 K, which may be uniform to about 25%, or 10 -s K -1 (Shao, private communication 1988).

The thicknesses of these elements generally are between 1 and 5 cm. Hence, even with these stable

materials, temperatures would have to be controlled to a few hundredths of a Kelvin to keep the

magnitudes of distortions below 10 pm, as required for microarcsecond precision from short-baseline

(L < 10 m) interferometers.
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5.2Gravitatlonal-wavedetection

What are gravitational waves*? Where do they come from? What are our chances of detecting

them? Why should we try?

This section will attempt to address each of these questions in turn. The reader who has perse-

vered this far in the report is reasonably prepared to address the third question already, because, in

a sense, most of this report has addressed it. The detection of gravitational waves by using a laser

interferometer to monitor the difference in displacements of two "inertial" test masses at the ends

of the arms of a dual-arm interferometer (as in Figures 7 and 9 through 11) requires extremely good

measurement sensitivity (Sg/L), better than any other scientific application being pursued at this

time. All of the error sources described in this report can pose serious challenges to the gravitational-

wave experimenter. On the ground, seismic and gravity-gradient noise restricts measurements to

short time scales (100 msec or less, typically 1 msec; see section 3.4.5). Since baseline lengths are

limited on the ground, sensitivity must be enhanced by suppressing photon-statistics noise (e.g.,

by power "recycling" techniques that increase effective laser power); by increasing the effective arm

lengths and resulting optical signal (phase shift) for a given strain induced by a gravitational wave

(by operating the interferometer arms as multireflection delay lines or resonant optical cavities); and

by suppressing scattered light; (see section 4.1). Knowledge or control of laser frequency fluctuations

is essential in order to distinguish their effects on the observed optical phase shifts from the effects of

a passing gravitational wave, especially in the presence of appreciable scattered light. In space, base-

lines can be very long (millions of kilometers, if spacecraft in solar orbit are used), so one can make

* The reader is reminded that "gravitational" waves should be distinguished from "gravity" waves,

although general usage has blurred the distinction. Gravitational waves are transmissions of signals

caused by changes in the structure of space-time that give rise to changes in the gravitational force

felt by an object. Gravity waves are any waves, such as ocean waves, in which gravity is the restoring

force.
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measurementsof gravitationalwaveswhose characteristic time scales are quite long, from seconds

to days. Since the long baselines make propagation losses significant, the ends of the interferometer

arms must have coherent laser transponders instead of retroreflectors, and laser phase (frequency)

fluctuations must be controlled or calibrated very accurately. At measurement frequencies between

about 1 mHz and 1 Hz, sensitivity is likely to be dominated by photon statistics (shot noise). At

very low frequencies, below 1 mHz or so, sensitivity is degraded by low-frequency external perturba-

tions to the positions of the test masses inside the spacecraft. Such perturbations include residual

gas pressure inside the chambers containing the test masses; thermal gradients due, for example, to

fluctuations in solar intensity; and changing gravitational attraction between spacecraft caused by

fuel usage and spacecraft motion (Stebbins, et ai. 1989).

5.2.1 What are gravitational waves?

Gravitational waves are "ripples in the curvature of space-time," caused by coherent bulk motions

of matter (such as the collapse of stellar cores) or by coherent vibrations of space-time curvature (a

subtle concept, but an accurate description of what is expected to happen around a black hole).*

General relativity predicts their existence and gives them two fundamental characteristics: first, they

travel with the speed of light; second, they are "transverse and traceless." The latter characteristic

means that they produce a quadrupolar, divergence-free force field, with two polarizations (see Figure

15). In the language of quantum field theory, which says that the energy in a radiation field must

be quantized, this means that the quanta of the gravitational field ("gravitons") have zero rest mass

and charge and are bosons with spin 2; because of their zero rest mass, their spins must be parallel

to their motion (as for photons), giving them only two independent spin states, or polarizations.

Gravitational waves are not precisely defined quantities, since the nonlinear character of the

* For a more complete tutorial on this subject, the reader is referred to a number of excellent

references: Thorne 1987; Deruelle and Piran 1983; Misner, et al. 1973.
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gravitationalfieldmeansthat the contributions of gravitational waves to space-time curvature cannot

be separated from the "background" contributions of everything else (the solar system, Galaxy, and

beyond). However, in all astrophysical scenarios for their production, the length scales over which the

waves vary in amplitude are much shorter than the length scales over which background contributions

to curvature vary; gravitational waves truly can be thought of as "ripples." This famous "shortwave

approximation" (Misner, et al. 1973) makes it possible to decouple the gravitational waves from the

background and treat them as independent entities.

The force exerted by a gravitational wave on a mass m is related to its position z (displacement

from a specified origin) by the fourth-rank Riemann curvature tensor Ra#-_6 (Misner, et al. 1973).

In general, each of the subscripts (a, _, 7, _f) can take on any of four values (0,1,2,3), representing the

three components of space (x,y,z) and one of time (t). The transverse traceless nature of gravitational

waves means that the only nonzero components of the Riemann curvature tensor are Rao_o; hence

a second-rank tensor is adequate to describe the force. Since the Riemann tensor has dimensions of

(1/time) _ or (1/length) z, it is appropriate to define a dimensionless second-rank tensor hj_ by

O2hjk
-- -2Rj0_0 cw (5.2.1a)

Ot 2 -

The jth spatial component of the force FI Gw induced on a mass m by a passing gravitational wave

is related to the kth component of the mass's position by

FjGw = -m RjotoGw xk - m 0_hjt zk (5.2.1b)
2 bt2 "

Since the resulting changes _fzJ in the mass's position are so tiny compared to the mass's distance

from the origin, the latter can be regarded as constant. Hence the displacement due to a gravitational

wave is related linearly to the components of its original position by the "strain" tensor hjk:

1 zk= hjk , (5.2.1c)
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andtheforcecanbewritten as

Fj cw 02(6zJ) (5.2.1d)
=m &----"7-"

If a gravitational wave is travelling in the z-direction, its transverse nature guarantees that the

only nonzero components of the wave field, or strain tensor, are the xx, yy, xy, and yz components.

The lraceless nature of the wave reduces these four components to two independent components (the

two polarizations referred to above, and shown in Figure 15): hzy = hv_, and h=_ = -hy_. These

components of the strain tensor are sometimes referred to as the gravitational-wave amplitudes,

since the energy carried by the waves is proportional to their square. If the arms of a dual-arm

interferometer are oriented at right angles in a plane perpendicular to the direction of travel of a

gravitational wave, and the arms are parallel to the lines of force (the x and y axes in Figure 15a), the

gravitational wave will induce displacements of equal magnitude but opposite sign in the two arms.

The difference in fractional displacement of the two interferometer arms, _f_/L in the language used in

previous chapters of this report (_ is the difference in the arm lengths), is thus a direct measurement

of the magnitude of the gravitational-wave amplitude h; i.e., _g/L __ h (in this example, h = h_).

5.2.2. Where do they come from?

All expected sources of gravitational waves strong enough to be detected by an observer in the solar

system are of astrophysical origin. Summaries of the variety of sources are given in many papers

(e.g., Press and Thorne 1972; Thorne 1987). Current understanding of the strength of the waves

produced by various events and the frequency with which they might occur (hence the distance

to the nearest one) is very limited, and predictions typically carry uncertainties of several orders

of magnitude. Nevertheless, semiquantitative predictions can be made, and these are crucial to

the effort to detect gravitational waves. The waves produced can be classified according to their

temporal characteristics: Periodic waves, which are superpositions of sinusoids whose frequencies

are well defined and essentially constant over an observing time; Bursts, or pulses, which last for
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veryshorttimes,ontheorder of milliseconds or less; and Stochastic waves, which last a long time

and fluctuate stochastically. These types and their possible sources are discussed below.

5.2.2a Periodic sources of gravitational waves

Periodic gravitational waves are characterized by a well-defined set of discrete frequencies and a

single polarization. For example, the amplitude might be

h(t) = hocos2rv/ , (5.2.2)

for frequency v. The expected strengths h for these sources are summarized in Figure 16a, together

with the kinds of detection schemes that might be used to measure them. Figure 16b is a more

detailed summary of low-frequency periodic sources (binary systems) and their strengths; these waves

would be detectable with sufficiently sensitive space-based long-baseline (107-km) interferometers.

Pulsars, or rotating neutron stars, are a possible source of periodic waves with frequencies in the

10- to 104-Hz regime accessible to ground-based laser-interferometrie detectors. Gravitational waves

will be emitted if there are deviations from symmetry around the rotation axis. Such deviations

might exist because of deformations in the star's solid crust (or core, if that is solid) produced in

"star quakes," or in young neutron stars (younger, say, than a few hundred thousand years) where

accretion has not yet smoothed the stars in the process of causing them to spin up to rapid rotation

rates (Pandharipande, et al. 1976; Schumaker and Thorne 1983). Deviations from symmetry also

could arise from magnetic pressure, if the internal magnetic fields are strong enough. However,

estimates indicate necessary field strengths to be stronger than observed. For example, for the

Crab pulsar, the internal field would have to be about 10 times as strong as the measured surface

field (Thorne 1987; Zimmermann 1978). Pulsars rotating more rapidly than a critical rate (which

corresponds typically to 1- to 2-msec periods) might develop a "CFS" instability (Chandrasekhar

1970; Friedman and Schutz 1978) that would produce strong hydrodynamic waves in the star's
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surface layers, which would radiate gravitational waves. Pulsars that are strong X-ray emitters are

good candidates for exhibiting this kind of instability; the expected gravitational-wave amplitude

scales with the square root of the X-ray flux. All estimates of their amplitudes give a value of h

smaller than about 10 -24 , which puts them beyond the capability of existing detectors. But they

may be observable with future laser-interferometric detectors -- perhaps on the moon, where seismic

noise is minimal, excellent vacuums can be maintained, and baselines longer than 100 kilometers

may he possible. These sources are in the bottom right-hand corner of Figure 16a.

Binary stars are potentially much stronger sources of periodic gravitational waves than are

pulsars. Characteristics of the waves that would be emitted from binaries are well understood, for

they depend only on the mass and orbital parameters of the system. The orbital periods typically

are several hours or longer, and the frequency associated with the gravitational waves emitted is

twice the orbital frequency. Such millihertz-frequency waves require long-baseline space-based laser

interferometers for their detection. For a binary system with reduced mass _ - M1M2/M and total

mass M -- M1 + M2, rotating with a frequency Vb, and at a distance r from Earth, the expected

gravitational-wave amplitude is (Eardley 1983)

- _ _-o \_] (binaries) , (5.2.3)

where M O is the solar mass and 1 pc _ 3x 1013 km. (Note that the energy carried by the gravitational

waves would have the expected 1/r 2 dependence.) The shortest-period binary system known consists

of a white dwarf and a neutron star, and has an orbital period of 11 minutes, hence a gravitational-

wave frequency of about 3 mHz (Priedhorsky, et al. 1986). Double white-dwarf and double neutron-

star binaries also are good candidates (see Figure 16b and Hils, et al. 1990).
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5.2.2b Burst sources of gravitational waves

Bursts, or pulses, of gravitational waves are superpositions of sinusoids (with complicated time

dependences) that last only for a few cycles, or a total time shorter than typical observation times,

which are on the order of milliseconds for ground-based detectors and several minutes to hours for

space-based detectors. (See Figure 16c for a summary of expected strengths and frequencies of burst

sources, and Figure 16d for a more detailed look at expected burst sources at frequencies below 1 Hz,

as would be appropriate for space-based detectors.) The amplitude at Earth of a gravitational wave

emitted in a burst is related to the total energy radiated in the form of gravitational waves, EGw,

their characteristic frequency vp [pulse duration rp _= (2_rvp)-_], and the distance r from Earth by

(Thorne 1987)

The detection of bursts is not as straightforward as for periodic waves. If the time dependence

of the wave amplitude h(t) can be anticipated, an appropriate Wiener filter is used with the detector.

The Fourier transform of a Wiener filter is the ratio of the Fourier transform of the expected signal

to the detector noise spectral density; a Wiener filter thus suppresses those frequencies in the signal

that are associated with high levels of detector noise. The observed output signal is then deconvolved

with the Wiener filter and the expected noise contribution subtracted off. It has been shown that

with this kind of detection scheme, the gravitational-wave amplitude h required to conclude at the

90%-confidence level that a gravitational wave has been seen in three different measurements (3

times per year) by two identical detectors is 3 to 5 times larger than the effective strain due to noise

(Thorne 1987).

Type II supernovae, produced by the collapse of the cores of massive, old stars to form neutron

stars, are excellent candidates for strong bursts of gravitational waves. Type I supernovae also may
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be good candidates; their generation is not well understood, but is thought to be associated with

the nuclear explosion of mass-accreting white dwarfs or the collapse of white dwarfs to form neutron

stars. In the latter case, little optical radiation would result, but gravitational waves should be

emitted (Thorne 1987). The gravitational-wave strength from a supernova depends on the degree

of nonsphericity involved in the collapse; no gravitational radiation would be emitted in a perfectly

spherical collapse. Type II supernovae may be highly spherically symmetric, although very little

factual evidence exists about them. Type I supernovae, if produced as currently thought, are more

likely to deviate considerably from spherical symmetry. In the Milky Way Galaxy, both types of

supernovae occur approximately once every 40 years; out to distances of 10 Mpc (the Virgo cluster

of galaxies), they may occur as often as several times per year (Tammann 1981). The collapse of

white dwarfs to neutron stars -- if such events really occur -- could be as frequent as four times per

year in our Galaxy. Most calculations of the collapse to neutron stars predict strengths on the order

of h -_ 10-23(10 Mpc/r) in two primary frequency regimes: ,,_ 1 kHz, caused by the initial collapse

and "bounce," and ,,- 10 kHz, caused by pulsations of the newly formed neutron star (see, e.g.,

Eardley 1983 or Miiller 1984). If the neutron star rotates in an end-over-end mode, the strength of

emitted gravitational waves might be as much as 50 to 500 times stronger (Ipser and Managan 1984;

Eardley 1983).

Stars or star clusters also might collapse to form black holes, emitting significant amounts of

gravitational radiation. The characteristic frequency of the waves scales inversely with the mass M

VBH _-- 57rGM _- 1.3 kHz (5.2.5a)

(Thorne 1987). Masses of black holes are expected to range from 2 M o to 101° M o. Collapse of

stars to form black holes of a few solar masses is expected to occur at the rate of about one per year

out to distances on the order of 10 Mpc. Holes as massive as --. 106/1//o, which probably form only in

galactic nuclei, may form at a rate of only a few per year throughout the entire observable universe,
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i.e., out to the Hubble distance (several thousand megaparsecs) (Rees 1983). If gravitational waves

carry away an energy equal to a fraction e of the final black hole mass M, their amplitude at a

distance r from Earth will be on the order of

) (10 0¢)h,a / -7 _ (5.2.55)

Potentially very strong (relatively speaking!) sources of gravitational-wave bursts are compact

binary systems composed of neutron stars or black holes, which are close enough that they may spiral

in and coalesce because of "radiation reaction," the loss of energy removed from the system in the

form of gravitational waves. The binary pulsar PSR 1913+16 is such a system (Taylor and Weisberg

1982); it should coalesce _ 3.5 x 10s years from now. The frequency of the gravitational wave, twice

the orbital frequency, increases with time until reaching its maximum during the final coalescence.

This maximum frequency is expected to be on the order of 1 kHz for neutron stars (masses on the

order of one solar mass); for black holes, the frequency may be lower, scaling inversely with the

mass of the primary (more massive) black hole (Thorne 1987). Generally, one would observe at

lower frequencies, e.g., 100 Hz, since the binaries spend more time at the lower orbital frequencies

and because Earth-based receivers tend to be less noisy at 100 Hz than at kilohertz frequencies.

The characteristic amplitude of the gravitational waves from such compact binary systems located

a distance r from Earth is

Low-frequency gravitational-wave bursts could be emitted when a star or a small black hole

passes near a supermassive black hole (,-- 10SMo). The characteristic frequencies and amplitudes of
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thewavesfor non-head-oncollisionsare (Kojima and Nakamura 1984)

1 - 10 -4 Hz (10SMo'_ (5.2.7a)
v ,,_ 20M1 \' _ ]

and

M2 10_21 (M_.._) (10 Mpc) (5.2.7b)h_ _ =2x
2r

where M1 is the mass of the massive black hole, and M2 is the mass of the infalling star or small

black hole. Within 10 Mpc there are of order 100 galaxies of comparable or greater mass than our

own (,_ 10 n Mo), including M87, which may contain a central black hole of --, 4 x 109Mo (Sargent,

et al. 1978; Young, et al. 1978; Richstone 1988). It is thought that these events could happen as

frequently as once per year (Thorne 1987).

5.2.2c Stochastic background of gravitational waves

Figure 16e (from Thorne 1987) shows expected strain amplitudes and characteristic frequencies for

various stochastic sources of gravitational waves. The most likely source of a stochastic background

of gravitational waves is the superpoaition of the waves from galactic binaries, and, to a lesser

extent (by a factor of about 6) from extragalactic binary systems. This background would exist

predominantly at frequencies below a few tens of millihertz (Hils, et al. 1990), and it may be

an obstacle to observation of low-frequency gravitational waves from other sources. A broadband

periodic source that produces a strain h will be observable over the background over an integration

time r only if h > (2rvr) -1/2 hbackground. At 0.1 mHz, the combined contribution from binaries to

the stochastic background might be on the order of hback_cound "_ 10 -18 (Figure 16e). This means,

for example, that integration times of order several months (r > 107 sec) will be required to detect

(unambiguously) gravitational waves from the white-dwarf binaries i Boo and SS Cyg (h ,,- 10-2°;

see Figure 16a).
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Otherpossiblesourcesofstochasticbackgroundinclude:(1)leftovergravitationalradiationfrom

thedemiseof postulatedpregalacticmassivestars("PopulationIII" stars),eitherassupernovae

or duringcollapseto blackholesor black-holebinaries(Rees1983; Carr 1986); (2) primordial

gravitational waves, produced during the first ,,- 10 -4a (!) seconds [the Planck time, (hG/cS) 112]

after the big bang when space-time became quantized and gravitons last scattered off matter (Thorne

1987); (3) very-low-frequency gravitational waves (10-_-10 -5 Hz) produced during phase transitions

in the early expansion of the universe (Hogan 1986); and (4) vibrations of "cosmic strings" -- one-

dimensional "defects" in the vacuum produced during a very early phase transition associated with

postulated grand-unified interactions (Thorne 1987).

5.2.3 What are our chances of detecting them?

The above description of gravitational-wave sources indicates that sensitivities _5t/L should be at

least as good as 10 -21 to have reasonable prospects of definitively observing several gravitational-

wave events per year. The primary technique for gravitational-wave detection being developed at

this time is laser interferometry, with baselines up to a few kilometers on the ground and up to

10 million kilometers in space. The discussions in chapter 3 and section 4.1 of interferometric mea-

surement techniques and associated errors are relevant to gravitational-wave detection. Dual-arm

interferometers would be used to suppress (by cancellation) errors that are correlated in the two

arms, such as laser frequency fluctuations and, to a limited extent, refractive-index fluctuations. To

improve sensitivity in the face of errors that are uncorrelated in the two arms and are independent

of arm length ("fixed-end effects"), the optical paths in the interferometer arms would be increased

in order to increase the optical phase shift produced by a given gravitational-wave-induced strain.

This could be accomplished by building physically larger interferometers, by operating the interfer-

ometer arms as optical delay lines or optical cavities, and by circulating the light back and forth
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between arms before recombining the beams (resonant recycling). Mechanical and thermal noise

leads to stringent requirements on seismic and acoustic isolation of test masses and to the need for

sophisticated disturbance-compensation systems in space. Radiation-pressure fluctuations from the

laser light itself (section 3.4.6) are not a significant source of measurement error at typical laser

power levels, and fluctuations in laser power or nonuniformities in the intensity distribution across

the beam could be made insignificant with intensity-feedback stabilization and mode-cleaning tech-

niques (section 3.4.3). Photon statistics, one of the most important and fundamental error sources

on the ground and in space, will be reduced as laser sources of higher power (and requisite fre-

quency stability) become available. In the meantime, or in conjunction with more powerful lasers,

techniques such as power recycling of the laser light are valuable (section 4.1.4), as may be the use

of squeezed vacuum light (section 3.4.1). For the very long baselines used in space, coherent laser

transponders must be used instead of retroreflectors to drive clown the photon-statistics error. These

error sources and others have been discussed in the previous chapters, along with ways to minimize

them. This section summarizes the limiting sensitivities for laser-interferometric gravitational-wave

detection as determined by these error sources.

It is useful to ask what the magnitudes of various system parameters must be in order to

reach measurement sensitivities _t/L of order 10 -21 or 10 -22 with laser interferometers, since the

discussion in section 5.2.2 indicated that such sensitivities would be required in order to have a

reasonable expectation of detecting gravitational waves from the kinds of sources believed to exist.

Begin by considering ground-based interferometric detectors designed for detection of gravitational

waves whose characteristic times (periods or pulse durations) are on the order of 2 milliseconds,

say. For maximum signal (strain produced by a passing gravitational wave), the light-storage time

in each arm of the interferometer should be on the order of 1 millisecond, or half the period of the

gravitational wave. For arms 1 kilometer in length operated as optical delay lines, for example, this

would require that the light make n = 150 round trips in each arm before being recombined with light
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fromtheotherarm(2nL/c= 1 ms). The photon-statistics error, described by equations (3.4.2) or

(3.4.15b), indicates that for a laser operating at l-pm wavelength, to reach 10 -_1 strain sensitivity

would require an effective power r/P0 > 60 W, equal to the laser output power P0 multiplied by

all appropriate efficiency factors that account for imperfect optics, mirror losses, detector quantum

efficiencies, and other losses. The sensitivity would scale for other values of system parameters in

the following way:

-- 1;m ; ;V00 (5.2 .Sa)

(The use of classical, unsqueezed light at the input ports of the beam splitter has been assumed.)

This sensitivity is very close to the standard quantum limit for position measurements on 10-kg test

masses in 1-ms integration times [eq. (3.4.18a)]:

(ftSqL v_6LsQL (.__)1/21- 1.4 x 10__2 (l_m) ( r l_g) 1/2~ - - ~ . (5.2.Sb)
L - L L lms

It is also comparable to the limiting sensitivity due to pendulum oscillation modes of the test masses

[eq. (3.4.12b)] at measurement frequencies v,n on the order of 1 kHz:

II = 300o K - -

(5.2.8c)

Distinguishability of gravitational waves from vibrational noise would require test masses to have

resonant frequencies as high as several kilohertz or more, and quality factors (Q) as high as 106

[eq, (3.4.12a)]:

__6gVibL"" Mr2 6LVibL ,_ 7.4 x 10_22 (1Lk__m) \(5kHz___v0,/ \vo/(B_,I_- 1I. (5.2.8d)
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Techniquessuch as the laser phase modulation decribed in section 3.4.2 might be used to suppress

the scattered light until its amplitude is down to 10 -5 that of the main beam. Presuming that

relative lengths of the two interferometer arms also could be monitored to this level (1 cm for a 1-

km baseline), calibration or control of laser fractional frequency fluctuations to a level of 10 -16 still

would be required to reach a photon-statistics-limited sensitivity of 10-_1; at 1-pm laser wavelength,

this means _v < 20 mHz:

)_- vf2e,cAL,¢ k e,c / _ " 1021 " (5.2.8e)

Even with the best available materials and techniques for isolation, ground noise will be an appre-

ciable source of measurement error at 10 -21 sensitivity for measurement frequencies on the order

of 1 kHz with a 1-kin baseline (see section 3.4.5). Refractive-index fluctuations due to residual gas

in the interferometer arms also might begin to be troublesome at this level of sensitivity. Perhaps

the only potential error source that would nol pose a challenge to achieving this sensitivity, given

the parameters necessary to meet the photon-statistics limit of eq. (5.2.8a), is radiation-pressure

fluctuations [eq. (3.4.15a)]:

5t_p ... 5x 10__6 (1Lkm) (_._) (i/Jm __P_0_1/' ( v _a/_-7- - 60 w) • (5.2.80

Next, consider a long-baseline (-._ 107 km) space-based laser interferometer formed among three

(or more) spacecraft in solar orbit, of the sort currently under study for the detection of low-

frequency (< 1 Hz) gravitational waves (Bender 1980; Failer and Bender 1984; Failer, et al. 1984;

Stebbins, et al. 1989). Such an interferometer is depicted in Figure 17; Figures 16b and 16d

show the expected spectral sensitivity together with the expected strengths of periodic and burst

sources of gravitational waves, respectively. Such a system is designed to measure gravitational

waves with periods ranging from 1 second to 10 s seconds (,,, 1 day) by measuring relative optical

phase shifts between laser light propagating down and back in each arm. Diode-pumped solid-state
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lasers,suchasNd:YAG,areexcellentcandidatesfor usein suchsystemsbecausetheycan operate

under frequency-stabilized conditions with high output powers (on the order of I watt), and exhibit

desirable characteristics for space qualification (robust, compact, and long-lived). A space-based

detector has three primary advantages over a ground-based detector: (1) it is free from Earth's

gravity gradients and mechanical noise and so can operate with high sensitivity at frequencies below

1-10 Hz, i.e., all the way down to about 10 -5 Hz; (2) it can have a very long baseline; and (3) the

test masses at the ends of the interferometer arms can be supported in a more nearly inertial manner.

However, over such great distances, propagation losses can become important, thus increasing the

photon-statistics error unless laser powers are increased accordingly. Also, at frequencies below

about 10 mHz, the space environment is far from quiet; significant spurious accelerations between

the test masses arise from such causes as residual gas pressure in the vacuum chambers housing

the test masses, cosmic-ray impacts, and thermal gradients arising from fluctuations in the solar

radiation. (These are discussed further below.)

Consider first the effects of photon statistics on measurement sensitivity. Because propagation

losses can be so severe over the long baselines associated with a space-based instrument, two cases

must be distinguished: one in which coherent laser transponders are used at the ends of the in-

terferometer to receive, amplify, and retransmit the received laser signal, and the other in which

retroreflectors are used (see subsection 4.1.4a). The limiting strain sensitivity $gph/L due to photon

statistics for these two cases can be found from eqs. (4.1.8). Assume for illustration here that the arm

lengths L are on the order of 10 7 km, the laser wavelength is 1/Jm, and that measurement integration

times v of,_ 104 s (--_ 3 hours) are used. Also assume that the telescopes are diffraction-limited, i.e.,

that sa = sB = 1 in eqs. (4.1.6) (this was not assumed for the example of planet gravity-mapping

because the latter application is by nature less demanding technologically and more feasible in the

near future). With retroreflectors, just to reach a sensitivity of 10 -_° would require 0.5-m telescopes
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and1.6 kW of average laser output power (assuming an overall efficiency factor rlvr __ 0.02):

( A___5/2(10'Is_I/_( L _(0.5m 0.5m_ 2 kW
10-2° (_'_)\lpm] \ r ] ,107"_m)\'D.4 _; ] (1.6p, ._r02) 1/2

(5.2.9a)

In contrast, smaller telescopes (DA _-- DB "" 25 cm) and much smaller transponded power Pt (on

the order of 16 W for overall efficiency _tr ,_ 0.02) are adequate to give a photon-statistics-limited

strain sensitivity of 10-23:

( A _3/2(104s_I/2(O.25m 0.25m'_(16W 0.02'_I/2

Note that because of L -_ propagation losses in each direction, the photon-statistics-limited strain

sensitivity with transponders is independent of baseline length, whereas the sensitivity with retrore-

flectors actually decreases with increasing baseline.

Uncontrolled or uncalibrated laser frequency fluctuations will also introduce error into the mea-

surements. To achieve a measurement sensitivity of 10 -21 with a 10V-km baseline, displacements

must be measured at the 10-picometer level, which requires measuring the phase of the laser light

to approximately 10 -5 cycles. This probably would be accomplished by down-shifting the Doppler

signals, narrow-band filtering, and using optimized digital filters for sampling and measuring the

phase (more sophisticated techniques than those described in section 4.2.1). Even if the arm lengths

can be held equal to 10 -4 , enabling some suppression of laser frequency fluctuations correlated in

the two arms, calibration of the laser frequency fluctuations to 10 -lz, or about 3 mHz, still would be

necessary over times as long as hours. A technique such as that described in section 4.1.3 should be

used, in which the length of one arm is held constant or monitored very precisely. This length is used

as a reference to calibrate the effects of laser phase (or frequency) fluctuations and so distinguish

them from the effects produced by a passing gravitational wave. Successful use of such a calibration

technique could ease the requirement on intrinsic (controlled) fractional frequency stability of the
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laser,possibly bringing it down to to 10 -1_ or so, i.e., to well within the reach of current technology

for a space-qualifiable, long-lived (> 10 years) laser.

Some other sources of measurement error or causes of change in the relative optical paths

that would be difficult to distinguish from changes induced by a gravitational wave include the

following: thermal expansion of the telescopes; "beam walk" across irregularities in optical surfaces;

"aperture walk" across nonuniformities in the laser beam (instabilities in laser power and beam

geometry such as those discussed in section 3.4.3); mispointing of the telescopes or misalignments

of optical elements; and refractive-index changes in the interplanetary medium. The contribution to

the last source from fluctuations in electron density could be calibrated with radio links between the

spacecraft (see section 3.4.4). These error sources must also be addressed in precision astrometric

and imaging instruments, although the tolerances for a gravitational-wave laser interferometer are

more demanding.

At the sensitivity levels required for gravitational-wave detection, particularly at measurement

frequencies below about 1 mHz, some additional error sources become significant, whose suppression

is very difficult. These are fluctuating displacements of the test masses due to stochastic external

accelerations. They arise from many different phenomena: residual gas pressure around the test

masses; cosmic-ray impacts; thermal gradients and fluctuating thermal radiation pressure due to

fluctuations in the solar flux; fluctuations in the solar-wind pressure; fluctuating gravitational at-

traction between the test masses and the surrounding Spacecraft (caused, for example, by fuel usage

and motion or distortions induced in the spacecraft); electrical charging-up of the masses due to

cosmic-ray impacts with resulting acceleration from electric fields in the cavities; nonuniform out-

gassing from the spacecraft; and fluctuations in the interplanetary magnetic field (diamagnetism of

the test masses). For quantitative discussion of these see Stebbins, et al. (1989); a brief discussion

is given below.
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Thesespurious accelerations must be suppressed to less than about 10-1sg (g __ 9.8 m/s 2)

in a 10-4-10 -z Hz bandwidth from nominal magnitudes that may be on the order of 10-13g,

in order to allow detection of gravitational waves. Such suppression will require state-of-the-art

materials technology and design for thermal insulation and mechanical stability and the use of active

disturbance-compensation systems (DISCOS, or drag-free systems) that outperform by several orders

of magnitude any such systems built to date (Stebbins, et al. 1989; see also section 3.4.5). Although

studies to date indicate that the desired drag-free performance is achievable, engineering design and

demonstration of the required drag-free system are major parts of the challenge of developing a

space-based interferometric gravitational-wave detector.

Figures 16b and 16d show the expected spectral density of gravitational-wave amplitudes from

low-frequency periodic sources (binaries) and burst sources, as might be observed with a space-based

interferometer like the one considered here. Also shown in those figures is the expected sensitivity

of such an interferometer. (These figures assume 106-km arm lengths rather than the 107-km values

assumed here and in recent studies of such a system, but the spectral sensitivity curves would

be similar qualitatively.) Sensitivity decreases above about 0.01 to 0.1 Hz because the arm length

becomes longer than half the wavelength of the expected gravitational waves. At frequencies between

1 mHz and 0.01 to 0.1 Hz, photon statistics are the limiting error source. At lower frequencies, 10 -5

to 10 -s Hz, the dominant error source is the random impacts on the test masses of gas molecules,

due to imperfect vacuums in the cavities surrounding the masses. It has been estimated that if

the residual gas density can be reduced to an internal pressure of a few times 10 -11 torr, and arm

lengths are 107 km, the sensitivity of the interferometer as limited by this noise source would be

10 -22 at _ = 10 -4 Hz, and would scale roughly as v -3/2 (Bender, private communication).

At still lower frequencies, around 10 -s Hz and lower, the dominant error source is expected

to be fluctuations in the net thermal radiation pressure on the test masses due to fluctuations in

the solar intensity (Stebbins, et al. 1989). From observational data on solar intensity fluctuations

130



togetherwithreasonableassumptionsaboutthedegreeofthermalshieldingachievableforthecavities

containingthetestmasses,it isestimatedthatthisnoisesourcewill limit sensitivityto about10-19

at frequenciesof 10-s IIz, andshouldrisesteeplywithdecreasingfrequency,asv -16/3 (Bender, et

al. 1988; Stebbins, et al. 1989).

A potentially dominant white-noise source of spurious accelerations of the test masses is impacts

from cosmic rays (protons) with energies up to a few GeV. The effect of impacts from galactic cosmic

rays is estimated to be roughly 30 times smaller than the effect of residual gas pressure described

above, tIowever, during solar flares, the flux of solar cosmic rays could rise to several orders of

magnitude higher than the flux of galactic cosmic rays; while the fraction of time when this might

occur is likely to be very small, the antenna performance would be seriously compromised during

that short time.

5.2.4 Why should we try to detect them?

(After reading the preceding subsections, how can the reader ask this? Or perhaps, after reading

about all the difficulties involved, how could he or she possibly not ask this in a serious way?)

The answer to this question could be long and detailed, but instead let it be short: the pre-

dictions and implications of general relativity and other theories of gravitation impact our under-

standing of the universe in profound ways. On cosmological scales, they have ramifications for the

structure, evolution, and destiny of the universe. On microscropic scales, they are tied intimately to

the fundamental laws of physics and to the (unified?) field theories that explain them. Suffice it to

describe here just a few of the significant impacts that would come from the regular (several times

per year, say) detection of gravitational waves.

General relativity predicts that gravitational waves, like electromagnetic waves, should travel at
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the speed of light, c. Alternative theories predict a different speed for gravitational waves, typically

a higher speed by a factor of 10 -6 or more (Thorne 1974). This could be verified with simultaneous

optical and gravitational-wave observations of supernovae. The difference in propagation speed

Ac/c would lead to a delay At in the arrival of the initial light outburst relative to the initial

gravitational-wave burst. For a supernova occurring at a distance r from Earth, this delay would be

At _ _ 2 weeks 109 (5.2.10)
c c 10 _Ipc "

Thus, a deviation of 10 -9 from c for the propagation speed of gravitational waves would show up

as a time delay of approximately two weeks between the optical and gravitational-wave bursts from

supernova explosions in the Virgo cluster of galaxies (roughly 10 Mpc from Earth). If Ac/c were

several orders of magnitude larger, say on the order of 10 -6 , the time delay for supernovae in the

Virgo cluster would be -_ 30 years, which would make it difficult to relate detected gravitational

waves unambiguously to a particular optical supernova. In that case, the test would be better

made with a supernova occurring near the center of the Milky Way Galaxy (r __ 10 kpc); there a

deviation Ac/c as large as 10 -6 would produce a time delay of roughly two weeks, while a deviation

Ac/c _ 10 -9 would produce a delay of about 20 minutes.

In any metric theory of gravity*, a gravitational wave can have at most six independent polar-

ization states (Eardley 1983). Some metric theories contain additional constraints that reduce this

number: in general relativity, the number is two; in the Dicke-Brans-Jordan theory (Brans and Dicke

1961), it is three. Both of these metric theories predict that the polarization state of a gravitational

wave is an invariant: different observers undergoing different motions while observing a gravitational

wave will measure the same polarizations. This is not the case in general for other metric theories.

* Metric theories are based on a mathematical representation built around a four-dimensional

space-time metric tensor and obey all the laws of special relativity in their local Lorentz frames (t he

Einstein equivalence principle). Virtually all viable theories of gravitation are metric.
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With regular observations of gravitational waves, enough statistical information on the polarizations

of gravitational waves could be gathered to support or disprove the prediction of general relativity

that only two possible polarizations exist.

Observation of the gravitational waves from known astrophysical sources could provide a great

deal of information about the sources. One well-studied example is rotating neutron stars, or pulsars.

Observational data on the amplitudes and relative phases of the spectral components of the gravita-

tional waves would provide definitive information about such a star's structure and dynamics. The

combination of data gained by measuring gravitational waves emitted after a star quake with timing

data gained by measurements of the electromagnetic energy radiated would reveal information about

the coupling of the solid crust (and possibly solid core) to the fluid mantle.

5.3 Planet gravity-field mapping

For decades, scientists have known that the best way to achieve a global characterization of the

Earth's gravity field with high sensitivity (1-mgal gravity anomalies and 1 to 10-cm geoid undula-

tions) and high spatial resolution (50 to 150 km) would be to monitor changes in the accelerations

experienced by orbiting spacecraft (Wolff 1969; Douglas, et al. 1980; Kaula 1983). Conventional

satellite-tracking data are adequate only for determining long-wavelength variations in the geopo-

tential, i.e., for spatial resolutions of several thousand kilometers (Koch and Witte 1975). Satellite

altimetry has been used successfully to measure features as small as 100 to 200 km in extent with

sensitivities of a few mgal (Rapp 1979), but altimetry has the disadvantages that it doesn't distin-

guish the geoid from sea level, and it doesn't give coverage of the continents. There are two basic

techniques for measuring the gravity field from orbit: the use of onboard gravity gradiometers or

in situ monitoring of changes in the relative velocities of two or more satellites, one in a low orbit

(equipped with appropriate drag-free systems) and the others either in the same low orbit or in

higher orbits. Although the recent development of superconducing gravity gradiometers has begun
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to make them competitive with the other techniques, theoretical calculations still suggest that the

best sensitivity and resolution could be achieved with two or more drag-free satellites in the same

low-altitude polar orbit, one behind the other (Breakwell 1979). Global coverage would be achieved

by using several such combinations of spacecraft distributed in longitude. The net change in range

rate between the satellites as they pass over an anomaly in the geopotential scales linearly with the

strength of the anomaly and the spacecraft separation, provided the separation is on the order of or

smaller than the desiEed measurement resolution (defined conventionally as one-half the horizontal

spatial extent or wavelength of the variations being measured). It falls off exponentially with the

ratio of orbit altitude to measurement resolution.

A mission of this sort was proposed first nearly a decade ago as GRAVSAT, which later came

to be known as the Geopotential Research Mission (GRM; e.g., Keating, et al. 1986). It would have

involved a pair of spacecraft in a single polar orbit at 160-km altitude, the lowest possible before

atmospheric drag would lead to unacceptable measurement degradation. The spacecraft separation

was to vary between about 150 and 550 kin, and the changing range rate between them was to

be monitored with two-way, dual-radio-frequency Doppler tracking between the spacecraft. With

1-pm/s range-rate precision and a year's worth of measurements taken at 10-second intervals (with 4-

second averaging times), this mission was expected to map the Earth's gravity field with a sensitivity

of 2.5 milligal for gravity anomalies and 10 cm for geoid undulations, down to spatial resolutions

on the order of 110 kin, or approximately 10 x 10. Higher resolution was precluded because of the

greater demand on range-rate measurement precision.

Significantly better performance might be achieved with a laser version of the GRM, that is,

using spacecraft equipped with frequency-stabilized lasers whose separations are monitored with

coherent laser links. The analysis described in this section suggests that such a mission could map

Earth's gravity field to spatial resolutions on the order of 50 km or better. The improvement provided

by the use of frequency-stabilized lasers results both from more accurate Doppler measurements and
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fromthepossibilityof usinglower-altitudeorbits.

Thissectionbeginsby derivingexpressionsthat relatemeasurementsensitivityin termsof

gravity-anomalystrengthsorgeoidundulationsto theaccuracyof range-ratemeasurementsamong

spacecraft.Simplifyingbutrealisticapproximationsaremadewherepossibleto keepthispresenta-

tion tractable,but comparisonwithresultsofmorerigorousanalysesis provided.Relationsamong

measurementsensitivity,spatialresolution,range-ratemeasurementprecision,andlaserfractional

frequencystabilityaresummarizedin tables.Errorsourcesthatimpactmeasurementsensitivityby

limitingrange-ratemeasurementaccuracyarediscussed,includingphotonstatistics,fluctuationsin

atmosphericrefractiveindex,and"drag"effectssuchasfluctuationsinsolarintensity.

5.3.1 Requirements on Doppler accuracy and laser stability

Consider two or three spacecraft in identical circular polar orbits around Earth (mass Me, radius

Re) or any planet of mass M and mean radius R, at an orbit altitude h (Figure 18). Suppose the

spacecraft are separated by nominal distances L, and that they form single-arm or collinear dual-arm

interferometers of the sort depicted in Figures 6b and 7a. The dependences on altitude h of orl_ital

periods r and velocities v follow from Kepler's law:

r(h) __ 91.5 min (1

v(h) __ 7.2 km/s (1

(5.3.1)

Throughout this section, numerical values given apply to Earth, but the extension to an arbitrary

planet of radius R, mass M, and surface gravitational acceleration 9 is straightforward. Hence-

forth, assume an orbital velocity v0 -- 7.2 km/s and mean Earth radius R --- Re --- 6370 km. If

the gravitational field were spherically symmetric, the orbital velocities of the spacecraft would re-

main constant, as would the separation L (or L1 and L2) between spacecraft. An anomaly in the
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gravitationalfield,suchasthat causedby alocalconcentrationof mass,will causeeachspacecraft

to speedupasit approachestheanomalyandslowdownasit recedes.(Theoppositeoccursfor

ananomalyoppositein sign,i.e., a local sparsity of mass.) The relative velocity (range rate) pro-

duced between two spacecraft by this perturbing acceleration will change sign as the spacecraft pass

over the anomaly, reaching its maximum absolute value when the two spacecraft are at an angular

distance of approximately h/R on either side of the anomaly. The gravitational potential can be

represented as an expansion in spherical harmonics, 1_,,,,

= _ Jt,n(R) Yl,,([2) ,
R I=0 m=-I

(5.3.2)

Jtm(R) = 21+ 1 _ dar ' (r')' p(r', a') Yt,_(f2') ,

where G is the gravitational constant, [2 denotes solid angle, and the integration is over the volume

of the planet defined by the region of nonzero mass density p (Heiskanen and Moritz 1967; Kaula

1966). A similar expression can be used for a description of the field in terms of surface layers and

surface mass densities. The spatial wavelength At and wavenumber k corresponding to the harmonic

of degree l are, respectively,

At -- 2_R/I, k =_ I/R = 2r/At • (5.3.3)

The goal here is to estimate the magnitude of short-wavelength variations in the gravity field

(At _< 400 km, or 1 > 100) from measurements of the changing separation, or relative velocity v,

between satellites. This is a standard "inversion" problem in which measurements of v are to be

transformed into a uniform representation of the surface gravitational potential. The "resolution" as-

sociated with harmonics complete through degree I is conventionally taken to be At/2, corresponding

to an angular resolution at -_Aa/2R = vr/l.

The potential at an altitude h also can be written in terms of the potential on the surface by
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usingPoisson'sformula(HeiskanenandMoritz1967):

f dl2' U(R, fl') (5.3.4a)g(,'= R + = R (,"2 - h2) 4-7 ,.2 + -- 2,'Rcos¢ "

Here ¢ is the angle between _" and /_, where _ is the line from the center of the Earth to the point

at an altitude h above the gravity anomaly, and /_ is the line from the center of the Earth to the

point on the Earth's surface at which the surface potential is measured. (The latter point may be

the "subspacecraft" point; see Figure 18.) Because the orbits are polar, coverage will be essentially

uniform at low latitudes; hence, for analysis, the spherical Earth can be replaced with an infinite

flat plane on which coordinates are specified by z, y values. In this "flat-Earth" approximation

(Breakwell 1979), Poisson's formula becomes a two-dimensional convolution involving the potential

on the surface:
h

U(x,y,h) = 27t(z2 + y2 + h_)a/2 * Uo,

Uo =- U(z,y,h=O).

Here the symbol , denotes (two-dimensional) convolution. Both for ease in calculations and

because the ultimate goal is to derive measurement uncertainties that correspond to a particular

resolution or wavelength, it is appropriate to consider the Fourier components of all quantities of

interest. The two-dimensional Fourier transform of the potential at a height h is

_](kz,k_,h) = e -kh Lr(kr,ky,h=O) =_ e -ih _]o(k) ,

(5.3.4c)

k = (k2 + ky_) 112 .

Representative values for wavelength, harmonic order, angular resolution, and the important factor

in the exponent of this expression, kh = lh/R = 2xl/)_t, are given in Table 5.3.1. Note that the

flat-Earth approximation is not valid at low frequencies, i.e., wavelengths ,_z > R.
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Table5.3.1 Relationsamong wavelength, spherical harmonic order, and angular size of gravity
anomaly. The last column, when exponentiated, describes the dependence of measure-

ment performance on orbit altitude h, here assumed to be 160 km. R is the Earth's

mean radius, -_ 6370 kin.

AI (km)
400

2O0

100

8O

5O

40

1= 2rR/A_
100

200

400

500
800 i

1000

a = Az/2R
1.80 °

0.900

0.45"
035*

0.23"

0.18"

tn/R
2.5

5.0

10.0
12.6

20.1

25.1

The equilibrium condition Vo_/2 = (U0+ constant) implies that the maximum change in range

rate 6vj between the spacecraft (from its equilibrium value of zero) is related to a perturbation in

the potential 5U(z, y, h) at the point located midway (in the z-direction) between the two spacecraft

by
vo _SVj = 6U(x + LI2,y,h) - 5U(z- LI2, y,h)

(5.3.5a)

= 5U(z,y,h) * 5D(y) [6D(z+L/2) -- 5D(z--L/2)] ,

where 5D denotes a Dirac delta function. In the Fourier domain, this relation is

/5_,(k) = 2i e_kh /f_ro(_)sin(kL2os¢) ,
v, (5.3.5b)

kcos_ = k_.

where the angle ¢ denotes the direction of the two-dimensional vector /_. Perturbations _v, in

relative velocity (range rate) due to local variations in the potential axe the signals of interest, as

opposed to perturbations in relative velocity due to other causes, including measurement error; hence

the subscript "s" on ,Svs. Most statistical models of the Earth ascribe fluctuations in the surface

potential to white-noise fluctuations in thin layers below the surface (Morrison 1976; Jordan 1978).

The perturbations 6U0 therefore are is.tropic:

(5.3.6a)



Perturbationsin thelocal gravitational acceleration g and the local geoid height n also are isotropic,

and are related to perturbations in the potential as follows (in Fourier space):

= k6Oo(k); (5.3.6b)

GM
6fi(k) = 1_ df/f0(k), g -- R2 -_ 9.8 m/s 2 . (5.3.6c)

g

Signal-induced velocity perturbations are not isotropic:

I_vs(/_.)l _ 16Vs,max(k)l sin(kL2os¢ ) . (5.3.7a)

In the "linear signal regime," where kLcos¢ << 2 or Lcos¢ << Ai/_r, the sine function can

be approximated by its argument, and the signal grows linearly with spacecraft separation L. To

simplify this presentation, ignore the nonisotropic nature of the signal and assume it has its maximum

value.* This maximum change in range rate is related linearly to the (Fourier transforms of the)

gravity anomaly strength and the geoid undulation:

vo I _rvo

16_,_,m_l - 2g e_th/R laal = 2g laal. (5.3.7c)
I_0 I) 0

Values of the maximum changes in range rate corresponding to a Fourier component l, or wavelength

,_t, are given in Table 5.3.2.

* A rigorous calculation including angular dependences and effects of Earth's rotation, but valid

only in the flat-Earth approximation and in the linear signal regime, appears in Breakwell (1979).

That calculation gives a result that agrees closely with the result of the simpler analysis done by

this author and presented here.
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Table5.3.2

AI (km)
400

200
100

80

50
40

Maximum changes in range rate [6_g,maxl and [_Vn,max] induced by a l-regal gravity
anomaly and a 5-cm geoid undulation, respectively, occurring over spatial extents At;

velocity-measurement accuracies cr_ required to detect l-regal gravity anomalies and

5-cm geoid undulations of wavelength At; and required frequency stability or knowledge
lfu/v to achieve the range-rate accuracy shown for 1-mgal anomalies, assuming a dual-

arm interferometer (three coorbiting spacecraft) with spacecraft separations nominally
equal to 0.1%. Spacecraft separation is assumed to satisfy the condition for maximum

signal, L = Az/2. An orbit altitude of 160 km is assumed, with v0 = 7.2 km/s and
R = 6370 km. It is assumed that 106 independent measurements are made, each with

a 1-s integration time. For a given wavelength Ai, spacecraft separation, and orbit

altitude the uncertainties in anomaly strength and geoid undulation scale linearly with

range-rate measurement precision.

i6_g,m_xl (1 regal)
14.3 pm/s

580. nm/s

1.9 nm/s
120. pm/s

41. fm/s
0.2 fm/s

169,,m_xl (5 cm)
11.0 pm/s

895 nm/s

5.8 nm/s
500. pm/s

250. fm/s

1.7 fm/s

c% (1 rngal)

810. #m/s

23. pm/s

54. nm/s
3.1 nm/s

820 fm/s

3.8 fm/s

av (5 cm)

620. pm/s

36. pm/s
165. nm/s

12. nm/s

5. pm/s

30. fm/s

6v/v (1 mgal)
4. x 10 -s

2.3 x 10 -7

1. x 10 -9

7.8 x 10 -1I
3.3 x 10 -14

2. x 10 -16

What is the connection between measurements of change in range rate and variations in the

gravitational potential? The answer requires use of some simple aspects of estimation theory, which

are described in the Appendix (section 8). Results are that, for gravity anomalies and geoid undu-

lations, respectively, the rms errors at harmonic I or wavelength At = 2_rR/l are

/,, 2a.4R ,_ 1/2
=

(5.3.8)

,,o ( 1/21x/2 eIh/r

(5.3.9)

The velocity-measurement accuracies au required to sense 1-mgal gravity anomalies or 5-cm

geoid undulations over various spatial extents are given in Table 5.3.2. These values assume a 160-
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km orbit altitude, an average over N,_ = l0 s identical, independent measurements, and that the

spacecraft separation L is adjusted to match the desired spatial resolution in order to maximize

signal (L = Al/2). Figures 19a and 19b are plots of the maximum change in range rate and the

required measurement accuracy for a l-regal gravity anomaly, as a function of wavelength. Note the

faint signal (small velocity" change) and high range-rate accuracy needed to sense variations in the

gravity field over spatial scales as short as 25 to 50 km.

The required range-rate accuracies shown in Table 5.3.2 can be converted to requirements on

control or calibration of laser fractional frequency fluctuations over the measurement integration

times tm by using eq. (4.2.9c) (which assumes a cycle-counting technique for Doppler measurements

-- a suboptimal technique, but one which will suffice to give a pessimistic rather than optimistic

requirement on laser frequency stability). Assume, too, that three spacecraft are used, and that they

form a collinear dual-arm interferometer with arms held equal to about 0.1%. This will ease the

requirements on control or calibration of the laser frequency fluctuations by a factor of about 1,000.

(If only two satellites are used, use of a "smarter" Doppler measurement technique as well as active

calibration of laser frequency' fluctuations may be able to compensate.) Under these assumptions,

the required laser fractional frequency stability (controlled or calibrated) scales with the required

range-rate accuracy av, the measurement integration time tin, and the spacecraft separation L _ cr

as follows:

8v ,, 10_1, (10?m)(t_) ( a, ) (5.3.10)-;" - 1  m/s

For illustration, consider the situation in which 106 independent 1-second measurements are made

with spacecraft separations of roughly 50 km (,_z -_ 100 kin). Using av -_ 54 nm/s (Table 5.3.2),

eq. (5.3.10) says that the laser fractional frequency fluctuations must be controlled or calibrated

to roughly 10 -9 in order to sense l-regal variations in the gravity field with spatial resolutions on

the order of 50 kin. For similar sensitivity with better spatial resolution (shorter wavelengths), the

frequency stability requirements become much more stringent. For example, to achieve 25-km spatial
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resolution (At = 50 km) with the spacecraft separated by 25 km (to maximize signal), fractional

fluctuations in the laser frequency must be controlled or calibrated to a few parts in 10-t4.

The single-measurement requirements for range-rate accuracy and corresponding laser frequency

stability derived above were eased by a factor of 1,000 by the assumption that information was to be

gained not from individual measurements but by an average over roughly one million (N,n _ 106)

independent measurements. Generally speaking, the separations among spacecraft are sensitive to a

specific gravity anomaly for only a small fraction of the orbit that passes directly over that anomaly

(_ 10% for anomalies of spatial extent < 100 km; see, for example, Fig. 5 of Douglas, el al. 1980).

Further, only 1 of every ,-_ 16 orbits will pass directly over that anomaly. Therefore, a given pair

of spacecraft may be sensitive to a specific anomaly only --_ 0.6% of the time. With measurements

made once per second, the total number of measurements per day that are sensitive to a specific

ground area is --, 500, so it would require 5 to 6 years to get 106 measurements. However, initial

ideas for GRM envisioned eight pair of spacecraft, which would reduce the time period for getting

10e measurements to about 8 months. The actual appropriate value for the number of measurements

Nm made over specific locations will depend on many factors and must be determined in the context

of the specific parameters and data-analysis procedures envisioned for the experiment.

5.3.2 Photon statistics

Measurement of the changing separations and range rates among spacecraft could be limited by poor

signal-to-noise ratio caused by an inadequate photon flux with which to make the Doppler measure-

ments. An approximate idea of the minimum laser power needed to keep photon-statistics errors

from precluding the necessary range-rate accuracies can be obtained by comparing the range-rate

accuracies listed in Table 5.3.2 with the photon-statistics error 6Lph in a length measurement for

a given integration time r. The latter was calculated in subsection 4.1.4a for the cases of retrore-
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flectors and transponders [eqs. (4.1.9)]. For illustration, consider the requirement of 820 fm/s for

single-measurement range-rate accuracy _rv in order to map the gravity field with 1-mgal sensitiv-

ity and 25-km spatial resolution. Most of the parameters in eqs. (4.1.9) can be assumed to have

their indicated values -- 10-cm nondiffraction-limited transmit and receive apertures for all space-

craft (deliberate beam-spreading by a factor of 5, say, for the central spacecraft and 15 for the outer

spacecraft), 5% overall optics and detection efficiencies for either transponders or retroreflectors, and

1-pm laser wavelength. In a 1-second integration time, photon statistics will cause a measurement

error of about 710 frn if retroreflectors are used and the initial laser output power is 10 roW, but

an error of only about 60 fm if the outer spacecraft have coherent laser transponders that retrans-

mit with an average output power of I0 roW. This factor-of-12 advantage with transponders over

retroreflectors depends on the ratio of telescope apertures to spacecraft separation [DADB/sAAL,

from eqs. (4.1.8)]; the laser output power would have to be increased by a factor on the order of

150 with retroreflectors to make up this advantage, bringing the requirement on average laser out-

put power (with retroreflectors) to about 1.5 W. As the range-rate accuracy requirements become

more stringent for higher-resolution gravity mapping, the error contribution from photon statistics

becomes a greater threat that can be subdued only by using higher laser powers, and the use of

coherent laser transponders instead of retroreflectors becomes essential.
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5.3.3Medium-lnduced phase fluctuations

Since ionospheric charged-particle effects are negligible at optical frequencies, medium-induced phase

errors would arise primarily from fluctuations in the atmospheric index of refraction. In general, the

fluctuations or perturbing accelerations that have the greatest effect on measurement accuracy are

those whose characteristic periods are commensurate with the time required to produce a signature

from the shortest wavelength components of the force being measured. At an orbit velocity of 7.2

kin/s, the spacecraft travel distances on the order of 100 km in approximately 15 seconds. Hence

the maximum deviation from zero of the relative velocity between the two coorbiting spacecraft

typically will be caused by external perturbing forces with 15-second periods.

Fluctuations in the refractive index due to atmospheric density fluctuations tend to occur over

periods considerably longer than 10 to 15 seconds at an altitude of 160 km (Bender, private com-

munication). The exception to this is short-period, large fluctuations due, for example, to the use

of spacecraft thrusters. Other short-period variations in density caused by processes such as iono-

spheric disturbances could constitute an important limit to measurement sensitivity. The average

path-delay in each arm due to a nonunity-average index of refraction does not pose a fundamental

limit to measurement sensitivity, provided it can be adequately calibrated (in a single-arm interfer-

ometer) or cancelled (in a dual-arm interferometer). At 160-km altitude above Earth, the average

index of refraction differs from unity by no more than a few parts in 1013; this would produce an

average path correction of about 10 nm for a 50-km arm length. If the difference in arm lengths

is 50 m or less, the corresponding difference in path delay between the two arms of a dual-arm

interferometer would be 10 pm or less.
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5.3.4External accelerations

Fluctuatingrelativeaccelerations on each spacecraft will result in fluctuating motions of the iso-

lated test masses used to define the precise change in position of each spacecraft, and could pose

a serious problem. Active disturbance compensation systems, such as were planned in the GRM

proposal, are required. Fluctuating accelerations could arise, for example, from buffeting by the

solar wind or radiation pressure, varying gravitational forces on the test masses as fuel moves and

is depleted, and outgassing, especially from the spacecraft attitude-control systems (see also discus-

sions in sections 3.4.5 and 5.2.3). For a rough idea of the magnitude of such forces, note that the

gravitational acceleration felt by a test mass due to a 104-kg point mass 3 meters away is on the

order of 7 x 10 -3 mgal. Fluctuations in the gravitational acceleration experienced by the test mass

as fuel moves within the spacecraft might be 2 to 3 orders of magnitude smaller than this, or about

10 -s mgal _ 10-11g (e.g., movement of 10 to 100 kg of fuel over distances of a meter or two). If

these changes occur over time scales of 10 to 15 seconds, they could produce fluctuations in the mea-

sured range rate between spacecraft on the order of 1 nm/s, unacceptably large for high-resolution

mapping (see Table 5.3.2). Stated a bit more rigorously, the Fourier components of an external

acceleration corresponding to periods T of 10 to 15 seconds, which have the form a - ao sin(2nt/T),

will produce periodic fluctuations 6v in the measured range rate v between spacecraft:

T
= a0. [1- cos(2.L/ oT)] (5.3.11)

Thus, a sinusoidal perturbing acceleration of strength a0 -_ 10-11g with a 10- to 15-second period

could produce changes in the range rate on the order of 0.3 nm/s over time scales of 10 to 15

seconds, for spacecraft separated by 25 to 50 km. All perturbing accelerations to the test masses

with fluctuations of this magnitude or stronger must be calibrated or cancelled with compensating

accelerations applied to the test masses.
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Oneof themostseveresourcesofperturbing accelerations in this application is the solar wind,

whose intensity varies unpredictably. The average deceleration due to the solar wind experienced by a

spacecraft in orbit depends on the time of the solar cycle, the projected frontal area of the spacecraft,

the local atmospheric density (a function of orbit altitude, latitude, and solar flux), and the square

of the orbital velocity. At an altitude of 175 km in orbit around Earth, a spacecraft experiences

an average deceleration of about 5 mgal _" 50 pm/s 2. Over time scales of 10 to 15 seconds, this

may fluctuate by as much as 0.1% (Bender, private communication), producing fluctuations in the

relative velocity between spacecraft as large as 150 nm/sec.

The only solution to fluctuating external accelerations is an active compensation system. A

successful "DISCOS" (DISturbance COmpensation System) unit was flown in 1972 on the U.S.

Navy TRIAD-1 satellite ("Staff of the Space Dept.," et al. 1974) (see section 3.4.5). It was able

to compensate for perturbing accelerations down to 10-11g along all three axes. The test mass in

this system was allowed to move within a dead zone of about 1 cm, and in the region surrounding

the mass, gravitational gradients were held to less than lO-11g/mm (Keating, et al. 1986). These

and much more advanced drag-free systems currently are under intense study for use with space-

based laser-interferometric detectors of gravitational waves (Bender, et al. 1988), and for a relativity

experiment intended to measure the Earth's "frame-dragging" effect to 1%, or 0.5 milliarcsecond

per year (Everitt, et al. 1988; see section 6.2.6). Studies indicate that the required performance

of approximately 10-I4g at 10-second periods for high-resolution mapping of Earth's gravity field

can be achieved and exceeded. The requirements on the DISCOS systems for the gravitational-wave

detectors are much more severe, by 4 to 5 orders of magnitude.
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5.4 Atmospheric wind-sensing

Programs have been under way for the last decade to develop CO2 (wavelength A = 9.11 to 10.06 pm)

pulsed coherent lidar systems for ground-based, airborne, and satellite measurement of atmospheric

wind velocity. Such systems would be used to measure horizontal components of the wind and

wind shear, as well as the vertical distribution of the horizontal wind field. The primary science

driver for Earth-orbiting systems is improved meteorological forecasting. This application requires

single-measurement accuracies of 1 to 5 m/s for each component of the horizontal wind field (whose

magnitudes may reach on the order of 100 m/s or 230 mph), and a vertical range resolution of

approximately 1 km (Huffaker 1978). For twice-daily global coverage with horizontal averaging

over 300x300-km cells, pulse repetition frequencies of at least 1 to 10 Hz are required, as well as

a scanning capability. The scanning results in large Doppler shifts of the backscattered signals

due to the high relative velocity of the orbiting spacecraft. At 10-pm wavelengths, these Doppler

shifts could be as large as 1 GHz (for a conical scan technique, a spacecraft at 800-km altitude,

and a 550 nadir angle; Menzies 1986). In contrast, the signal of interest -- the Doppler shift due

to backscatter from aerosols -- would be only 200 kHz at 10-#m wavelengths, for aerosols with a

relative velocity (line-of-sight component) of approximately 1 m/s. A pulse repetition frequency

f must be used that is high enough to measure maximum velocities of 50 to 100 m/s; this would

be --_ 10 to 20 MHz at 10-pm wavelengths. However, as discussed in subsection 4.2.2b, such high

sampling frequencies can be avoided with bandwidth reduction techniques in which the signal is

detected in several narrow overlapping filters of width bd (bd "_ f/lO, for example), each of which

is followed by an analog-to-digital filter; the Doppler information is then processed in parallel. (See

Figure 13 and discussion in subsection 4.2.2b.) In general, pulse energies in the range of 1 to 10

J ate desired, although this requirement depends strongly on laser wavelength for a given velocity-

measurement precision. In addition, for satellite-borne operation, lidar systems also must satisfy

strict size and weight conditions, and have lifetimes of several years.
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Theoretical studies made over the last 5 to 10 years have suggested that remote wind-sensing

lidar systems at optical frequencies could provide several advantages over infrared and microwave

systems (Kane, et al. 1984; Menzies 1985, 1986). As shown in section 4.2.2, for comparable received

signal strengths (detected number of photons), the shorter-wavelength system could offer a smaller

velocity error and better range resolution [eqs. (4.2.19)]. In Earth's atmosphere, if turbulence effects

are negligible, the received signal strengths for 1-pro and 10-pro pulsed coherent lidar systems with

similar pulse energies are roughly comparable, because the backscatter cross section is 10 to 50 times

larger at 1 pm than at 10 pm (Kent, et al. 1983; Patterson, et al. 1980). Turbulence effects are

worse at 1 pm than at 10 pm, because the transverse atmospheric coherence length scales roughly

as _6/s (see subsection 4.2.2c); however, these effects can be minimized by using small apertures,

and eliminated by going to Earth-orbit. The Doppler shifts at 1-pm wavelengths are 10 times higher

,than at wavelengths of 10 pm. Thus an effective sampling frequency of 100 to 200 MHz would be

required to measure relative velocities of 50 to 100 m/s. The bandwidth reduction techniques noted

above could be used to reduce this high sampling frequency.

A performance comparison based on relative photon efficiencies (required number of transmitted

photons per pulse for a given velocity-measurement precision) was carried out by Menzies (1985,

1986) for four different candidate lidar systems. These included two coherent (heterodyne) systems

based on 10-pm CO2 lasers and 1-pm Nd:YAG lasers, and two incoherent (direct-detection with

Fabry-Perot filters) systems using frequency-doubled (0.5-pm) Nd:YAG lasers and Raman-shifted

XeCl excimer lasers (0.35 pro). The performance of the coherent systems was found to be superior

to that of the incoherent systems. The comparison in this reference was restricted to conventional,

flash-lamp-pumped Nd:YAG lasers, which (in a pulsed mode) operate at ,_ 1% electrical-to-optical

efficiency, while C02 lasers operate at _ 5% efficiency. Even so, the Nd:YAG sytem was found to

be competitive with the C02 system, but the latter was preferred because of the eye-safety problem

(see subsection 4.2.2d). A change from conventional to diode-pumped Nd:YAG lasers, which operate
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withelectrical-to-opticalefficienciesnear10%,makesthe latter perform better and more efficiently

than the CO2 systems. Because of the eye-safety problem, it is possible that for the time being CO2

systems will remain the favored candidate for near-Earth applications. (See subsection 4.2.2d for

more details.)

Armed with the groundwork laid in section 4.2.2, the reader can make a quick but accurate

performance comparison of different kinds of coherent pulsed lidar systems that might be used to

provide a global wind-sensing capability, without having to resort to numerical computations of

complicated equations such as the radar equation (4.2.16a). Such a comparison is outlined below,

for systems operating at 1.06 pm and 10.6 pm. Similar performance evaluations could be made for

a variety of science applications, such as measurements in planetary atmospheres and rings made

from spacecraft or landers, or measurements on interplanetary dust, as well as other meteorological

and commercial applications mentioned in section 4.2.2 for Earth's atmosphere. One need only use

different expressions or numerical values for the backscatter coefficient, efficiency r; (dependent on

the receiver/detector system as well as propagation lo_es between spacecraft mad target medium),

and desired range resolution and then optimize system parameters such as receiver area, pulse

energy, pulse width, and sampling frequency to give the desired velocity-measurement precision and

range resolution. Results and equations from section 4.2.2 will be used freely here, with minimal

explanation and no derivation.

The system parameters to be assumed, and potentially optimized, include the laser wavelength

_, pulse duration rp, pulse energy Ep, receiver diameter Dr (receiver area Ar = xDr2/4), and overall

receiver/detector efficiency r/r. For wind-sensing, the range L typically will not exceed 10 km. As

stated above, a range resolution of 1 km is desired; the range-gate duration r e = Mrp therefore must

be no longer than 6.7 ps [eq. (4.2.14a)], regardless of wavelength. For the sake of comparison, assume

here that a pulse width rp = 3.2 ps is used for both the 1-/Jm and the 10-/Jm systerm. Assumed

values for other system parameters (E_, Dr, _r) are listed in Table 5.4.1. If tJae _]stem is to be able

149



to measureamaximumrelative velocity (line-of-sight component) of 50 m/s (the "Nyquist velocity"

VNy), the sampling frequencies f must be 100 MHz and 10 MHz for the 1-#m and 10-prn systems,

respectively (vNy = fA/2).

Other parameters relevant to evaluating performance depend on the nature of the scattering

particles, including their size and distribution as well as the transmission efficiency of the laser

light through through the medium. For this application, the aerosol volume-backscatter coefficient

/3 (units of m-is -1) will be approximated for _ = 1 #m from model calculations by Kent, et al.

(1983) for midtropospheric altitudes, and will be taken from JPL (Menzies 1986) and NOAA (Post

1984) measurements for _ = 10 pm. At 5-km altitude, the backscatter coefficient at _ = 1 pm is

approximately 10 -s m -1 sr -t, compared to 2 × 10-l° at ,_ = 10 #m. At low altitudes (-,_ 2.5 km),

losses due to water vapor absorption can be significant for the 10-#m laser; however, the aerosol

backscatter coefficient rises by so much at the lower altitudes that it is a reasonable approximation

to ignore these losses. At 1-/Jm, the extinction is far less, and again negligible relative to the

backscattering. This factor of 50 difference between the backscatter coefficients at 1 #m and 10 tim

approximately cancels the --, _2 dependence of the other factors contributing to the total number

of signal photons detected (see Tables 5.4.1 and 5.4.2), making the signal strengths comparable for

the two systems, if equal pulse energies are used. (Possible degradation in signal strength due to

turbulence in front of the receiver is neglected here; as discussed in subsection 4.2.2c, it could be a

greater problem at 1/_m than at l0/_m.)

Another parameter to be assumed, which in practice must be measured or taken from models,

is the expected spread (standard deviation) in velocities of the aerosols, due to turbulence and

wind-shear effects. A value of _rmed = 0.4 m/s will be used here, consistent with values used by

Huffaker (1978) and Menzies (1986) describing conditions of light turbulence and an average wind

shear appropriate for midlatitude locations. This value corresponds to a correlation time r¢orr (time

over which successive signals are correlated) of approximately 2 ps at 3_ = 10 pm and 0.2 ps at
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A = 1 pro. Detector integration times ra are taken to be equal to these values for the respective

lidar systems. These quantities are summarized in Table 5.4.1 below.

Table 5.4.1 Assumed system parameters and backscatter cross section for performance comparison

between 1-#m and 10-pm coherent pulsed Doppler lidar systems for global wind-sensing.

The maximum expected relative velocity vNy = f_/2 is 50 m/s. The standard deviation
amed of the velocity distribution for the aerosols is 0.4 m/s. Detector integration times

re are set equal to the resulting correlation times rcorr "_ _/(47r_med). The range L is

10 kin. A pulse duration rp = 3.2 ps is used for both systems, adequate to provide 1-kin
range resolution. See section 4.2.2 for further discussion and definition of parameters.

Parameter )_ = 1 pm _ 10 pm

Dr

rv

f (-" 2VNy/)_)
rd

0.1J

0.4 m

0.1

3.2 ps
100 MIIz

0.2 ps
10-s

0.1J

0.4 m

0.1

3.2 ps
10 MHz

2.0 ps
2 x 10 -1°

The derived quantities which are used with equations (4.2.17) to calculate velocity-measurement

precision are summarized in Table 5.4.2 (see section 4.2.2 for discussion and definitions). Clearly,

with the parameters chosen here, the 1-pm and 10-pm systems both can provide precisions in the

1 to 5 m/s range. The precision of the 1-pro system is about a factor of 3 better than that of the

10-pm system. Even if the puise energy of the 1-pm system were dropped from its nominal value

here of 0.1 J to 40 mJ (the ANSI recommendation for maximum pulse energy because of eye-safety

considerations), the velocity precision for the 1-pro system would remain about 0.1 m/s. This is so

because with the other parameter values assumed here, the 1-pro system is operating with such a

high SNR (the quantity A is the dominant contributor to measurement error) that a cut in pulse

energy by 40% is barely noticeable.

151



Table5.4.2 Derivedquantities for comparison of achievable velocity-measurement precision for the

1-pm and 10-pm lidar systems described in the text and in Table 5.4.1. See section 4.2.2
for discussion and definitions.

Parameter

a_,bw = A/4xrp
if0 ---- (O'med 2 + O'bw2) 1/2

s

Nd = srd

=_2frp

SNRw _ (_Nd) 1/2

A

B

C

_ = (A 2 + B 2 + C2)112

A=Ipm

0.025 m/s

0.4 m/s
0.10

10 s s-1

2O
640

113

0.10 m/s
0.003 m/s

0.003 m/s

0.10 m/s

A= 10pm

0.25 m/s

0.47 m/s
0.12

2 × 10 7 $ -1

40

64

51

0.32 m/s

0.02 m/s
0.02 m/s

0.32 m/s

Where does laser frequency stability enter in? The spectral width (full width at half maximum)

of the pulse is _vbw = 2a_,bw/A _ (2_rvp) -1 , where equality in the second relation holds only for

a Fourier-transform-limited Gaussian pulse. In practice, the pulse spectral widths may be greater

than (2xvp) -x . However, no reasonably efficient system would have the pulse spectrM width greater

than about 1/2XVcorr, where rcorr is the correlation time defined by the spread of velocities in the

medium, rcorr - A/2amed; thus, one would choose pulse durations rp > rcorr- When rp = Tcorr and

_ubw = (2_rl"p) -x, the velocity-measurement error due to the pulse spectral width alone, _rv,bw, is

equal to the spread amed in target velocities. If the pulse spectral widths were allowed to be as great

as (2_rrco_r) -1, they would be 800 kHz and 80 kHz for the 1-pro and 10-pm systems, respectively; note

that in Table 5.4.2, a pulse duration rp = 3.2 ps and a pulse spectral width of approximately 50 kHz

were assumed for both systems. Spectral widths of 50 kHz require stabilization of the frequencies of

the reference lasers being used to generate the pulses to a part in 10 l° and 109, respectively, for the

1-pm and the 10-pro system. In .contrast, spectral widths of 800 kHz and 80 kHz for the 1-pm and

10-pm systems, respectively, would require reference-laser frequency stability of only 3 parts in 10 °

for each of the systems. With these larger pulse spectral widths, the velocity-measurement precision
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for thetwosystemswould become comparable and on the order of 0.45 m/s, still dominated by the

A term in eqs. (4.2.17). Note that the velocity-measurement precision au in Table 5.4.2 is the best

possible precision for the given pulse width rp = 3.2 ps (set by the desired range resolution) so long

as the number of detected photons per integration, Nd, remains of order unity or higher. Improving

the reference-laser frequency stability to better than 50 kHz will not improve velocity-measurement

precision unless it occurs along with an increase in pulse duration (and corresponding narrowing of

the pulse spectral width), which may be unacceptable in view of the desired range resolution.

Thus, in general, the frequency stability of the laser being used to generate pulses is a key

ingredient to improving velocity-measurement precision. Looking back at the forms of the three

terms in the expressions (4.2.17) and (4.2.18) for the measurement precision, this is almost obvious.

The B and C terms depend on the signal strength Nd, but they grow rather slowly as the signal

strength drops. By comparison, the A and C terms grow much more quickly with increasing O'bw,

or pulse spectral width. Except in situations where the backscatter cross section is extremely small,

the primary contributions to velocity-measurement error come therefore from the pulse spectral

width and the spread of velocities of the scattering particles. However, it also has been pointed out

that velocity-measurement precision cannot be improved indefinitely because of the upper limit set

on pulse durations by a desired range resolution. Since the pulse spectral width 6Ubw > (2_rrp) -1

and the pulse width rp is constrained by the desired range resolution aL to satisfy rp < 2aL/(Mc)

[M > 1, eq. (4.2.14)], the fractional frequency stability of the reference laser need not be better than

v 41raL _- 8x 10-11M 1 pm aL } "

The requirements outlined at the start of this chapter for a global wind-sensing lidar system

appear to be well within reach of systems operating at either 1 pm or l0 pm, given fairly modest

requirements on frequency stability. Even with modest pulse energies (say 40 mJ for an eye-safe

1-pm system), the primary contribution to measurement error will come not from the received
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signalstrength,but fromthespectralwidthof the pulses and the spread in velocities of the aerosol

particles. Measurement error can be reduced only by narrowing the spectral width of the pulses.

This requires improved frequency stability of the reference laser, and possibly also pulses of longer

duration.

5.5 Light-scattering experiments with planetary spacecraft

Much of our knowledge about the dynamical and internal properties of planets and their satellites,

as well as their atmospheres, ionospheres, and rings, has been inferred from radio tracking and

communications sytems data obtained with planetary spacecraft, especially orbiters and landers. In

particular, these data have provided information on gravity fields; rotational properties (spin-axis

orientation and motion, spin rate); shapes; surface dielectric constants; pressure, temperature, and

density profiles for atmospheres and ionospheres; altitude profiles for electron-number density; and

refined ephemerides. Some of these measurements and their techniques are described qualitatively

in chapter 6 below, with suggestions for analogous experiments that could be performed with optical

(laser) tracking and communications data. This section looks at three kinds of experiments involving

measurement of propagation effects on highly coherent laser light transmitted from a spacecraft: (1)

atmosphere-occultation experiments, (2) ring-occultation experiments, and (3) surface-scattering

experiments. Where possible, quantitative descriptions of the expected performance of laser systems

are indicated and compared with information obtained from radio-frequency experiments performed

with Voyager at Saturn.

A related category of experiments not included here is the study of planetary ionospheres and

planetary magnetic fields through occultation experiments. Such experiments attempt to deter-

mine electron-density profiles and characterize turbulence in ionospheres, and measure magnetic

fields. Magnetic-field strengths are inferred directly through Faraday rotation of the polarization.

The degree of rotation is proportional to the magnetic-field strength, the interaction length, and a
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wavelength-dependentfactorproportionalto A-2. Magnetic-fieldorientationcan be inferred indi-

rectly by studying plasma irregularities, since the latter are expected to be aligned with the field;

scintillation data are used to deduce the orientation and anisotropy of the component of the plasma

irregularities perpendicular to the direction of propagation (Tyler 1987).

Studies of plasma with occultation experiments are done more easily at radio frequencies than at

optical frequencies, because the effects of propagation through regions containing charged particles

-- phase scintillation caused by decrease of the group velocity and increase of the phase velocity --

are more pronounced (see section 3.4.4). Typically, dual-frequency coherent radio links are used to

study these wavelength-dependent effects. For example, the Voyager spacecraft transmitted both S-

and X-band signals, wavelengths approximately 13 and 3.6 cm, respectively. Addition of a coherent

laser link, on which these propagation effects would be negligible, could aid the calibration of the

radio-frequency data.

5.5.1 Atmosphere-occultatlon experiments

Traditional radio-frequency occultation experiments measure the intensity, frequency, polarization,

and group delay of radio signals transmitted from a spacecraft to Earth as the spacecraft is occulted

by a planet or satellite. Given adequately powerful sources and sufficient data-gathering capability

on board the spacecraft, these experiments could be performed in reverse, i.e., in an uplink mode.

Some of the advantages and problems of performing the experiments in an uplink mode--Earth

transmitting a signal to a spacecraft as the spacecraft passes behind a planet or satellite---are

addressed in subsection 5.5.2d. Typical objectives of atmosphere-occultation experiments are to

determine temperature and pressure as functions of altitude in the stratosphere and troposphere,

determine composition (e.g., methane and helium abundances), and investigate turbulence and other

irregularities. For bodies with thin atmospheres (such as Mercury, Mars, or Io), occultation data

can be used to improve estimates of their radii (e.g., Howard, et al. 1974).
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Measurements of the Doppler shift of the transmitted signal due to passage through an atmo-

sphere give direct information about the angle of refraction in the atmosphere. These Doppler shifts

are calculated from the total measured Doppler shifts by removing effects due to the orbital motion

of the spacecraft, the Earth's rotation, and any other predictable sources. Using the notation de-

fined in Figure 20a, the angle 0 between the transmitter (spacecraft) velocity v't and the wave vector

along the ray path from the transmitter to receiver (Earth) is related to the Doppler shift VD and

the wavelength _ by

vtcosO = _ VD . (5.5.1)

The refractive bending angle ¢(a) is obtained as a function of ray-asymptote distance a by combining

the measured Doppler shifts with knowledge of the spacecraft velocity and the Earth-planet and

planet-spacecraft orientations and separations. Measurements of the refraction angle ¢(a) then are

used to estimate the refractive index n(h), or refractivity p =_ n - 1, as a function of height h

above some reference value. Unfortunately, it is not possible in general to infer a unique refractivity

profile #(h) from measurements of the refraction angle; also, the inversion can be very complicated

(e.g., Fjeldbo and Eshleman 1965). A unique inversion does exist if the atmosphere is spherically

symmetric. However, in general, the atmosphere is modeled as successive, thin concentric shells of

constant refractivity in which conditions of hydrostatic equilibrium are assumed, and the refractivity

profile calculated by numerical iteration.

If independent information exists on the composition or mean molecular mass rh, the refractivity

profile can be used to determine the gas number density n0(h ) (Tyler 1987). Then, assuming

conditions of hydrostatic equilibrium, the density can be integrated down from the top of the neutral

atmosphere to yield a pressure profile p(h):

p(h) = 9(h')nAh')dh' ; (5.5.2a)

here g(h') is the acceleration due to gravity. If an initial temperature is assumed at the top of
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the atmosphere, the temperature profile T(h) can be inferred from the pressure profile through the

perfect gas law:

p(h) (5.5.2b)
T(h) = kB ng(h ) "

Alternatively, in the absence of information on composition, one can begin with an independent

measurement of temperature at a known altitude, e.g., through infrared sounding measurements.

The combination of temperature and the measured refractivity profile yields a value for rh, thus

constraining the possible composition. An important potential source of uncertainty is the unknown

departure of atmospheric gases from ideal behavior, which could be significant in the outer solar

system where temperatures are low. Occultations as close as possible to the middle of the planet's

disk (in the plane of the sky) and at small spacecraft-planet separation (D in Figure 20a) are desired

in order to probe as deeply as possible into the atmosphere. Where multiple occultations occur at

different parts of the planetary disk, the collection of thermal-structure profiles provides information

on the general circulation and dynamics in the atmosphere. Obviously, it is of considerable value to

compare data obtained in this way to in situ measurements of pressure and temperature. Occultation

techniques are especially useful for regions of the atmosphere that are too high for direct probing,

but too low for infrared sounding (Kliore and Patel 1980).

The most important error sources in estimations of the refractivity profiles from Doppler shifts

are inadequate knowledge of the local vertical direction and uncertainty or instabilities in the fre-

quency of the spacecraft oscillator. Knowledge of the local vertical must come from measurements

of the gravity field and rotation rate, as well as measurements of local circulation velocities. Fre-

quency stability of the onboard oscillator is particularly important for data obtained from deep

within the atmosphere during the exit phases of the occultation, when an uplink frequency reference

is not available. Errors in the local vertical and fractional frequency of the onboard oscillator both

contribute linearly to errors in a derived temperature T. To see this, start from the premise (not

derived here; see, e.g., Eshleman, et ai. 1977 and references therein) that the inferred temperature
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T depends on the component of the projection of the spacecraft velocity on the plane of the sky v,

that is along the local vertical direction (defined at the distant planet) -- call it v± _ v_ cos ¢ -- in

the following way:

lnT = _1 inv± 2 + constant. (5.5.3a)
77

Here the subunity factor r/is the signal-intensity attenuation due to extinction and refraction effects;

typically it ranges from 10 -4 to 10 -_. Hence the fractional error in determination of the temperature

T is related to the error in inference of v± by

_T 2 6v±

T r/ v±
(5.5.3b)

Uncertainty in vz comes both from uncertainties 68vert in the direction of the local vertical and from

uncertainties in measurement of the spacecraft velocity made from Doppler measurements. The next

few paragraphs address each of these sources of error.

Since v± _ v, cos _b, where ¢ is the angle between the local vertical and the spacecraft velocity

in the plane of the sky, the fractional error in v± is related to the error _0vert : -_¢ in the local

vertical direction by

= tan¢ 60_ert • (5.5.4a)
V.l.

Hence the fractional error in determination of temperature T is

6T 2
m _ _ tan_b 60vert • (5.5.4b)
T v/

This expression for sensitivity to errors in the local vertical is appropriate at the maximum pene-

tration level, when refractive beriding is greatest (Eshleman 1975); at smaller penetration levels, the

temperature estimate is somewhat less sensitive to uncertainty in the local vertical. The factor of

tan ¢ will be assumed to be approximately unity here (¢ _ 45 °) in order to give worst-case numerical
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estimatesfor theerrors.Thus,to achievea 1%errorin temperaturein thepresenceof a signal-

intensityattenuation77__ 10 -3, the local vertical direction must be known to about 5 microradian

(prad). This requirement scales with different values of r/and fractional temperature error as

Uncertainty in the local vertical direction tends to be greater for the large outer planets than for

Venus and Mars. For example, differential rotation between the zones and belts on Jupiter can in-

troduce deviations in the local vertical of up to 5 milliradian, about three orders of magnitude higher

than the allowable uncertainty for a 1% error in temperature estimation. If not correctable, such an

error would invalidate profile data in the lower atmosphere. Note that if independent measurements

(e.g., by infrared sounding at various altitudes) can provide a more accurate determination of the

temperature, they could be used to infer information about variations in the local vertical and thus

information about atmospheric currents or variations in the gravity field.

Fractional errors in temperature associated with uncertainties or fluctuations in the frequency of

the spacecraft oscillator arise primarily from uncertainty in the frequency drift rate. The meast_red

Doppler shifts exhibit a linear drift with time due to motion of the spacecraft behind the planet,

which correspond to an apparent drift _ in the spacecraft oscillator's frequency _ of order

2
12/

_ v c--ft" (5.5.5a)

Here D is the distance of the spacecraft from the center of the planet at occultation (see Figure 20a),

and c is the speed of light. The distance D typically is 3 to 4 planet radii for the terrestrial planets,

and around 10 planet radii for the giant planets. The projected velocity v± is of order 5 km/s.

Hence the factor v±2/cD can be on the order of 3 x 10 -9 s -1 for Venus, and 10 to 30 times smaller

for the outer planets. Uncertainties in the determination of temperature arise from uncertainties

in v±, and hence from uncertainties 8/, in the inherent drift rate of the oscillator frequency. Over
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measurement times tin, typically on the order of 5 to 10 minutes, the Doppler shift will change, and

the oscillator frequency appear to drift by an amount Av _ tmb. This change can be measured

no more accurately than the oscillator frequency v is known over the measurement time; i.e., the

error associated with measurement of Au is on the order of/iv or larger. Thus, the fractional

error in temperature caused by uncertainties /ik in the modelled drift rate, given a signal-intensity

attenuation ,1, is limited by uncertainties in the frequency of the spacecraft oscillator in the following

way:

/iT 1 6h 1 < c_2)/iv (5.5.5b)T 77 _ ,I

Given that values for the measurement time trn and the projected velocity v± for occultations of

the inner planets do not change appreciably for occultations of the outer planets, better frequency

stability will be required for the outer (giant) planets, where the distance D is larger. The factor

cD/t,nv.t 2 is on the order of 106 for Venus occultations, and can be 10 to 30 times larger for the

outer planets. Thus, a 1% error in temperature determination typically would require a fractional

frequency stability of 10 -11 , and likely better than that for the outer planets. Note that these

stabilities refer to long-term (300 to 600 seconds) components of the unmodelled drift; however,

more rapid fluctuations in frequency of comparable magnitudes would affect the shape of temperature

profiles, and also are undesirable.

Fundamental to reconstruction of the detailed structure of atmospheres from occultation exper-

iments is knowledge of the index of refraction, obtained by measuring the angle _ through which

rays are bent as they travel from the spacecraft to an Earth-vicinity receiver (or vice-versa, if the

experiments are conducted in an uplink mode). This angle of refraction (¢) is inferred from mea-

surements of the Doppler residual of the transmitted signal, defined as the Doppler shift after all

known contributions such as spacecraft-receiver relative velocity, oscillator-frequency drift rates, and

relativistic effects have been subtracted. The error/i¢ associated with its measurement therefore
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depends critically on knowledge (or stability) of the spacecraft oscillator's frequency v:

die __ Cv, (_-_)_'_ 30nrad (10k_m/S_v, / (_-_ 1012) . (5.0.6)

Here v, is the projection of the spacecraft velocity onto the plane of the sky (perpendicular to

the receiver-spacecraft line-of-sight). The "Ultra Stable Oscillator" used on Voyager 1 exhibited a

fractional frequency stability of 1 to 4 xl0 -12 over short times (1 to 600 sec) and __ 5 x 10 -11 over

periods of about a day, thus enabling measurements of the bending angle to an accuracy of about

10 nanoradians (Tyler 1987). Since typical values for v, will be on the order of tens of kilometers

per second, it can be stated generally that calibration or control of fluctuations in the spacecraft

oscillator's frequency to one part in iO N enables detection of a change in angle of refraction on the

order of 1O4-N radians. Note that this relation is independent of the frequency of the spacecraft

oscillator - i.e., it holds whether the spacecraft oscillator is a laser or a microwave transmitter.

Doppler data offer the best potential accuracy for measurements of the refractive bending angle.

However, simpler intensity measurements can provide a useful independent (though generally less

precise) check, and they also can provide additional information, such as the intensity attenuation

factor r/required for temperature determination. Signal intensity is reduced primarily by two effects

related to propagation through an atmosphere: extinction due to scattering and absorption, and

differential refractive defocusing. The latter arises because refractive bending is greater for rays that

penetrate deeper into the atmosphere. Absorption and scattering effects can be described by an

opacity or optical depth 7-; they cause a fractional loss e -_ in signal. They can be distinguished

from refractive losses to some extent by their spectral characteristics, but the distinction is more

straightforward if Doppler measurements are available to determine the refractivity profile. Extinc-

tion profiles at two frequencies can provide information on the location and density of the clouds or

other absorbing material. The fractional intensity loss due to refractive effects depends on the depth

of the occultation D¢ relative to the scale height H of the atmosphere and the planet radius R (see
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Figure 20a, and assume _ << 1; R is taken to be that radius where the atmospheric pressure is on

the order of 0.1-1 bar). For a spherically symmetric, tenuous exponential atmosphere, the ratio of

the intensities of the occulted and free-space waves, or the attenuation factor 77, is

1 1

(Tyler 1987). Usually differential refractive defocusing dominates other refractive losses, i.e.,

D_/H >> 1 >> D_b/R in this approximate expression. Hence the signal-intensity reduction can

be approximated by

The use of intensity measurements (as opposed to Doppler measurements) to measure the refractive

bending angle _ is most reliable for an approximately lossless atmosphere (r = 0), in which case the

angle _ or the scale height H can be inferred directly from measurements of the signal attenuation

[eq. (5.5.7b)]. If both intensity and Doppler data are used, the optical depth r can be inferred. Then

measurements of the variation of r with height and wavelength can be used to put constraints on

atmospheric composition.

Accurate estimation of the refraction angle from intensity measurements may be hindered

severely in practice by antenna-pointing errors. For such measurements, it is critical that the space-

craft antenna follow the refracted direction of Earth and keep the virtual Earth at the peak of the

antenna beam, where signal intensity is maximum and sensitivity to small pointing fluctuations is

minimal. For planets such as Venus, where the maximum bending angle can be as large as 150 to

200 , the necessary pointing control can be difficult to achieve. For Mars, where the maximum bend-

ing angle is only about 0.050 (__ 1 mrad), the requirement is satisfied easily at radio wavelengths

(beamwidths)_/D __ 10 mrad), but still might pose a challenge at optical wavelengths (beamwidths

)_/D __ 1 prad). For the outer planets, where maximum bending angles are on the order of 0.5 ° , these

pointing errors currently limit intensity measurements made at radio frequencies (S- and X-bands)
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to accuracies of 1% or worse, inferior to measurements based on Doppler shifts (Tyler 1987).

Table 5.5.1 summarizes the results described on the preceding pages, and gives numerical values

of the relevant parameters for several solar-system bodies. The last two columns show the required

knowledge of the local vertical and of the spacecraft oscillator's frequency in order to achieve a 1%

error (roughly) in determination of temperature. For the outer planets, actual variations in the

local vertical direction can be large enough to make temperature determination to this accuracy (by

these methods) difficult or impossible in practice. The assumed value of 0.1 radian (_ 5 °) for the

maximum refraction angle of the outer planets is an order of magnitude larger than Pioneers 10

and 11 were able to measure before signal attenuation became too great (Anderson, et al. 1974a,b;

Null, et al. 1975) and 2 to 3 times larger than that measured for Jupiter and Saturn by the Voyager

spacecraft (Tyler 1987). Since measurements corresponding to deeper penetration may be possible

at shorter wavelengths or with higher transmitted powers, the larger maximum refraction angle is

used here to suggest a desirable fractional frequency stability. For lasers operating at 1 /_m, the

most stringent requirement on fractional frequency stability is about 10 -13 for an occultation by

Jupiter's atmosphere, which implies control (or calibration) of the laser frequency to within 30 Hz

over time scales of several minutes. As discussed in chapter 2, space-qualifiable solid-state lasers

exhibiting this degree of frequency stability with average output powers of 1 watt or more are fast

approaching reality (Day, et al. 1990; Byer 1988).
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Table 5.5.1

Body

Venus

M ars

Jupiter
Saturn
Titan

Uranus

Neptune

Requirements on spacecraft laser fractional frequency stability (uncalibrated fractional

drift 6v/v over a 5-minute integration time) and knowledge of local vertical direction

(_Overt) to achieve 1% error in temperature determination from atmospheric occultation
experiments [see eqs. (5.5.3-5)]. Signal-intensity attenuation is assumed to arise primar-

ily from differential refractive defocusing [q -_ H/(D¢); see eqs. (5.5.7)], and spherical

symmetry is assumed. The occultation distance D (separation between spacecraft and
center of planet) is taken to be 3 to 4 planet radii for Venus, Mars, and Titan, and

10 planet radii for the outer planets. Planetary radii are taken from Allen (1973) and

Titan's radius is from Tyler (1987). Scale heights H for Jupiter, Saturn, Uranus, and

Neptune are based on assumed blackbody temperatures of 200, 170, 150, and 130 K,

respectively. The maximum refractive bending angles ¢ were supplied by Anderson (pri-
vate communication 1989). For the calculation of required oscillator frequency stability,

a projected spacecraft velocity v± of 5 km/s was assumed; thus Su/v -_ 0.01y//40D.

R (103 km)
6.1

3.4

71.3
60.1

2.6
24.5

25.1

D (10 a km)
25

10

700

600
10

240

250

H (km)
10

10

2O
40

25

45
25

¢ (rad)
0.3

0.001

0.1

0.1

0.05
0.1

0.1

(10 -3 )
1

103

0.3

0.7
50

1.9
1

_0vert (_rad)
5

5 x 103

1.5
3.5

25O
9.5

5

6v/u (10-")
1

2500

0.01

0.03
125

0.2

0.1

Several other types of information can be obtained from atmospheric occultation data. Pressure

profiles p(h) over a range of altitudes h are needed to calculate chord lengths in the plane of the

sky between specified pressure levels and infer the planet's shape at different pressure levels. The

shape reveals information about atmospheric circulation and about the planet's interior structure.

Occultation data from Voyager at Saturn were used in this way to conclude that Saturn winds persist

to atmospheric depths of at least 10 scale heights (Tyler 1987). '

Turbulence and other irregularities in planetary atmospheres can be studied by monitoring

rapid fluctuations in signal amplitude (scintillation). This requires care in the removal of back-

ground effects, such as the average background atmospheric refractivity. These background effects

cause variations in diffraction scale size with occultation depth, which in turn cause variations in

signal amplitude. Internal gravity waves and other small-scale atmospheric structure can be de-
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tectedthroughcomparisonof observedintensityvariationswith predictionsbasedontheobserved

or inferredverticalatmosphericstructure.

5.5.2 Ring-occultation experiments

Ring-occultation experiments attempt to determine the following information: radial structure of

the ring system; vertical structure of the rings (e.g., whether they are cloudlike or single-layered); to-

tal amount of material in the rings; sizes, size distribution, and number density of the ring particles;

and constraints on particle shapes, composition, and orientation. This information is inferred from

measurements of the complex extinction (change in amplitude and phase of a signal propagating

through the rings) and the forward-scattering cross section as functions of wavelength, polarization,

and radial distance from the planet (or other occulting body). As in atmosphere-occultation ex-

periments, at radio frequencies this is accomplished traditionally by transmitting two wavelengths

coherently from the spacecraft to the ground, and recording the phase, intensity, and polarization

of each. (Discussion of performing such an experiment in an "uplink" mode instead appears in

subsection 5.5.2d below.) The received signals at each wavelength are of two types: (1) a coherent

component consisting of light that has come directly from the spacecraft and which is attenuated in

intensity and possibly phase-shifted because of differential refraction, but which retains its charac-

ter as a quasimonochromatic sinusoidal signal; and (2) a Doppler-broadened incoherent component

consisting of light that has been scattered into the line of sight by ring particles larger than the

wavelength, the strength and spectral shape of which depend on the near-forward-scattering cro6s

section as well as the occultation geometry.

This subsection describes the simplest models and some of the basic techniques that have been

used in conjunction with frequency-stable radio-frequency transmitters on planetary spacecraft to

obtain information about rings. These descriptions are applicable to the use of laser transmitters as

well, and they will be so applied throughout this section. The techniques involve measurements of the
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phaseandintensityof thedirect(coherent)signal,aswell as spectral characteristics of the scattered

(incoherent) signal. A description of the occultation geometry is given first, together with a simple

model for the ring particles. Next, the observables associated with the coherent and incoherent

signals are defined. Limitations to the amount and accuracy of information are discussed, arising

from oscillator-frequency fluctuations, pointing errors, and photon statistics (or receiver thermal

noise at radio frequencies).

The typical geometry for ring-occultation experiments is shown in Figure 20b. (See figure

caption for elaboration.) In traditional experiments, the transmitter is on the spacecraft, near a

ringed planet, and the receiver is on Earth. Throughout this discussion it is assumed that the ring

particles move in circular orbits about the planet with mean velocities v(rp) = (GM/rp) 1/2, where

M is the planet mass, rp is the distance of the ring particles from the planet center of mass, and

G is the universal gravitational constant. For Saturn ring particles at 4 Saturn radii, or about

240,000 km, this velocity is about 12 km/s. Since Saturn ring characteristics are known best from

Voyager observations, they will be used frequently for illustration.

For simplicity, the ring particles can be modeled as dielectric spheres whose radii a are dis-

tributed over a range of values. Physically, the maximum particle size is determined by collisional

fragmentation; sizes as large as several tens of kilometers are possible at Saturn (Marouf, el al.

1982), although observations indicate a predominance of particles in the centimeter-to-meter size

range. The minimum particle size is determined primarily by radiation-pressure forces, which sweep

the ring clear of objects smaller than a critical size. The distribution of particle sizes depends on

the physical processes that produced the ring particles, as well as their evolutionary history. One of

the simpler distributions used to model particle sizes is a power-law distribution p(a) o¢ a-q for a in

some range (amin, amax), with p(a) =_ 0 outside this range. Power-law indices between 3 and 4 are

consistent with a model in which rings are formed from the fragmentation of larger bodies. Smaller

power-law indices (0 to 2) would be consistent with formation by condensation from smaller parti-
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ties(Alfv6nandArrhenius1976).In practice, more complicated distributions often are used (e.g.,

Cuzzi and Pollack 1978). It is assumed here that the particles scatter independently, i.e., that they

are widely separated from one another. Equivalently, the fractional volume of the rings occupied

by particles is much less than unity: np4_r(a3)/3 << 1, where np is the particle number density, a

the average effective radius of the particles, and angle brackets denote a statistical average. This

assumption of a small "volume fraction" is supported by observations; for example, volume fractions

of order 1% or smaller are inferred from observations of Saturn's rings.

A radially-varying effective refractive index n(r) or refractivity /J(r) = n(r) - 1 is defined

below [eqs. (5.5.9) and (5.5.10)]. It permits a useful analogy between ring-occultation experiments

and atmosphere-occultation experiments, such as a description of the phase shift exhibited by the

coherent component of the received signal in terms of differential refraction. This quantity will be

used here to motivate certain results whose derivations are beyond the scope of this report.

5.5.2a Coherent (direct) signal

The direct, or coherent, component of the received light gives a detailed map of the distribution _f

particle sizes for particles smaller than the wavelength of the transmitted light, as well as information

about the total amount of material traversed by the light. As the transmitted light passes through

the ring material, it is attenuated because of scattering and absorption and bent by differential

refraction effects associated with a nonuniform radial density of ring particles. The latter effect

produces a phase shift with respect to the incident light (see Figure 21). The complex amplitudes

E_ and E0 of the received coherent signal and the transmitted signal, respectively, are related by

Ee =E0 e i_° _1/2 e-rH2 ei_c .

The factor _ accounts for a loss (or gain) in signal power due to defocusing (or focusing) of the

emerging wave, a consequence of the bending due to differential refraction. The "oblique" opacity
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oropticaldepth,re,represents the loss of energy from a light beam along its path from transmitter to

receiver due to scattering and absorption by ring particles. The phase shift ¢0 arises from predictable

Doppler frequency shifts due to effects such as the relative velocities of the transmitter, ring particles,

and receiver, known oscillator frequency drift rates, and special and general relativistic effects. The

phase shift _bc is an additional phase shift experienced by the direct ray that would not arise if the

ray were traversing free space (defined below). The ordinary opacity r - rc sin 00 and phase shift

¢ --- ¢c sin 00 describe the complex extinction that would be measured if the track of the transmitted

ray were perpendicular to the ring plane, i.e., if the ring plane were coincident with the plane of the

sky as the spacecraft passed behind the rings. The angle 00 is the angle between the ring plane and

the incident probe beam, commonly referred to as the "ring opening" (see Figure 20b). Ideally, one

would like to arrange for the angle 00 to be 90 °. Here convention will be followed by referring to the

opacity r and phase shift ¢, but the reader is reminded that the quantities measured directly are re

and ¢c.

As noted above, the overall effect on the amplitude and phase of the direct ray due to propaga-

tion through the ring plane can be described in terms of an effective refractivity p or refractive index

n _=/J + 1, by analogy with the analysis of atmosphere-occultation experiments. The imaginary part

of the effective refractivity, IZI, is inferred from measurements of the opacity r through the relation

r = --_ oo p](z) dz, (5.5.9a)

where z denotes the direction perpendicular to the plane of the rings. If the refractivity were

uniform across the rings so that no bending of the direct ray occurred, then the real part of the

effective refractivity, PR, could be inferred in a similar way from measurements of the phase shift

_b. Typically, the effective refractive index varies along the track followed by the transmitted rays

(spacecraft) behind the ring plane, causing the phases of adjacent rays to be shifted relative to one

another and the wave front of the transmitted ray to arrive slightly bent. The bending angle ¢ is
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related to the radial derivative of the real part of the refractivity by

.[__ dz (5.5.9b)¢ -_ O_/za(b'°'z) sinOo
oo

The bending produces an additional change in the phase shift ¢, and it also may contribute to a loss

or gain in received signal power due to defocusing or focusing of the transmitted signal [the factor

in eq. (5.5.8)].

The phase shift ¢ is inferred from integration of the measured Doppler residuals up, typically

obtained with a closed-loop receiver that tracks the frequency of the coherent signal. Refractive

bending through an angle ¢ produces a contribution vo(¢) to the Doppler residual:

_o(¢) = v, C/X, (5.5.9c)

where v, is the component of the spacecraft velocity in the plane of the sky [cf. eq. (5.5.6)]. The

remainder of the Doppler residual can be described as arising from the real part of the effective

refractivity, pR. The phase shift ¢ is thus

=_sinOo f 2r ,o at "_ _rD¢2 2rr __ _- I sin Oo + -_- pa(z) dz,
co

(5.5.9d)

where D is the distance between the transmitter and the point of intersection with the ring plane

(Figure 20a; van de Hulst 1957; Marouf, et al. 1982). Thus, the inference of an effective refractivity

profile /z(r) for the rings is analogous to that for atmospheres or ionospheres: measurements of

Doppler residuals are used to calculate the bending angles ¢(r), the residuals are averaged over

time to calculate the phase shifts ¢, and then this information is combined with measurements of

signal-intensity extinction (opacity r).

The direct ray is coherent with the transmitted signal because individual scattered waves very

close to the forward direction interfere with each other coherently. The mathematical description for

169



this forward-scatteredlight is identicalto that for a light beam scattered from a dielectric medium

of refractive index n occupying the ring volume (R.ayleigh 1899). The equivalent refractivity /a is

related to the wavelength of the transmitted light A, the average number density of particles nv, and

the average (dimensionless) forward-scattering amplitude A0 by

)t 3

/z __ (27r)2 n v Ao . (5.5.10a)

(The dependences of/z, nv, and A0 on position in the ring plane have been suppressed.) In the

absence of ray bending and for a 90 ° ring opening, the complex extinction is related in a simple way

to the column density ne - npd (where d is the thickness of the ring plane), the rms particle radius

a, the wavelength A, and the forward-scattering amplitude A0:

2r / A_¢ + i2 =- A p(z) dz = 2-_ n_Ao • (5.5.10b)

In the geometric-optics limit, where the average particle size a is much greater than the reduced

wavelength A/27r of the illuminating beam, the forward-scattering amplitude Ao _- i 27r2a2/A _

(van de Hulst 1957), so there is negligible phase shift (¢ _ 0), and the opacity _"is proportional to

the average effective geometrical cross section of the particles, r _ 2ra2nc. The geometric-optics

limits would be appropriate in most situations for laser transmitters (since wavelengths A are on

the order of 1 pm), so the optical depth r would have this simple mathematical form and physical

interpretation. Since the majority of particles in the rings of solar-system objects are not larger than

several centimeters, the "radio" depth does not have this simple relation to the average geometrical

cross section of the particles, and the opposite limit -- the Rayleigh scattering limit -- often applies.

In that limit, where the average particle size a is much smaller than the reduced wavelength, if the

particles are lossless (no'nabsorbing), the opacity scales as a6 and the phase shift scales as a s. The

opacity and phase shift are given more precisely by the Rayleigh formulas (Rayleigh 1899), which
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includeanequivalentrefractiveindexn:

8_r (n2-1_ 2 (._)4 aSr = --_ \n 2+2j n, as _ 2.3x 103 n, _ , (5.5.11a)

(-_) aa4, f n _ - 1"_ aa (5.5.11b)
¢ = "-_ \n2+2] nc __ 11 n_ -_--.

The last expressions apply to water ice with n "_ 1.78+i0.0. Physically, the coherent-signal amplitude

and phase constitute two independent pieces of information, whose combination allows inference of

both the column density nc and the average particle size a. If the measurements can be made at

two different wavelengths (e.g., S and X bands as done with the Voyager spacecraft), additional

information can be inferred about the particle absorptivity, and hence composition.

The Rayleigh-limit behavior of lossy particles such as silicates with n _ 2.32 + i0.03 is quite

different from that of lossless particles. Both r and ¢ are proportional to aa/A (Campbell and Ulrichs

1969). In particular, when written in terms of the real and imaginary parts of the refractive index,

n =_ na + inl, they take the form

r = -5- LIn2 + 212J"' _ O.6nc -_- , (5.5.12a)

'" n+l ] a3 (__) a 3¢ = --_ (na - 1) n-5-_+2 j n_ __ 23.4 n,-_- (5.5.12b)

(Marouf, et al. 1982). In this situation, r and ¢ are not independent quantities and cannot be

combined to give complete information about the column density and average particle size.

Figure 22 shows curves relating r and _b to the ratio a/A. (See figure caption for further

description.) These curves show quantitatively what was stated qualitatively above: for scattering

from particles smaller than the transmitted wavelength, the optical depth and phase of the coherent

wave depend strongly on particle size. In this regime, measurements of intensity and phase of

the coherently transmitted ray provide detailed information on particle size and distribution. For
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scattering from particles larger than the transmitted wavelength (the geometric-optics limit), the

phase shift is zero for all particle sizes, and the opacity is proportional to the column density and

geometric cross section of the particles. Inferences about particle sizes are discussed below, after

discussion of the incoherent signal.

The direct ray is associated with a physical ring area approximately equal in area to the ellipse

of the first Fresnel zone (Marouf, et al. 1982), with semimajor and semiminor axes of dimensions

(AD)I/_/sin 80 and (AD) 1/2, respectively (see Figure 23). Recall that 80 is the ring opening and D is

the distance of the spacecraft behind the planet during occultation. For best resolution in mapping

the radial structure of the particles in the rings, this ellipse would be lined up with the rings as shown

in Figure 23, so that the semimajor axis of the ellipse falls along the projection on the ring plane

of the spacecraft-receiver line of sight, and the spacecraft motion and semiminor axis are along the

radial direction from the center of the planet. At Saturn (D _ 240,000 km _ 4 Saturn radii), X-band

measurements of the direct ray (I" and _b) gave ring widths to a resolution of _ 6 kilometers for this

optimum geometry. The analogous resolution obtainable with a laser (A = 1 pm) ring-occultation

experiment at Saturn could be -_ 30 meters. For ring widths W >> (AD) 1/2, the ringlets behave

locally as a plane slab, and ray-bending effects are negligible. For ring widths comparable to or

smaller than the first Fresnel zone [W < (AD)I/2], ray-bending (focusing or defocusing of the beam)

can become significant for scattering from particles much smaller than the wavelength. This ray-

bending can be seen both in amplitude data by virtue of the g_n or loss associated with focusing

or defocusing effects, and in frequency data, where it will cause a shift in measured frequency

(hence phase shift _) for the direct ray. The absence of such frequency shifts in the data would

indicate negligible ray bending and thus a predominance of particles larger than the wavelength.

The Fresnel-zone width (AD) 1/2 is the resolution with which contributions of an individual ringlet to

the received signal can be isolated and is therefore also the resolution with which the radial profile of

the optical depth and the scattering cross section of individual resolved ringlets can be reconstructed.

172



Contributions from individual ringlets also can be identified in contour maps of constant Doppler

frequency shift obtained from spectral measurement of the incoherent signal, although typically with

poorer resolution (see Figure 24 and discussion below).

5.5.2b. Incoherent (scattered) signal

Next, consider the scattered or incoherent signal. The scattered ray arrives with a range of fre-

quencies relative to the frequency of the direct ray, depending on the velocities _'p of the scattering

particles (see Figure 21). In the notation of Figure 20b, the classical Doppler shift vn between the

direct ray arriving from a particle at point O on the ring plane and a ray that has been scattered

into the receiver's line of sight from a particle at point P with velocity _'p is

1 4sin2_ (fit - g_) • ÷op , (5.5.13)_D -- $ (_',-- _'_) • (÷o,--÷_r) --

where ÷or and rpr are unit vectors pointing to the receiver from points O and P, respectively; _op is

a unit vector pointing from O to P; and/_ << .1 is the angle at the receiver between the direct and

scattered rays.

The measured power spectral density S(v) of the incoherent signal can be used to infer the near-

forward scattering cross section a(/_, _'p), a function of the small angle/_ and the scattering-particle

position in the ring plane. Azimuthal symmetry will be assumed, so _'p will be replaced by rp _= r. In

general the inference is not straightforward, because the incoherent signal is a weighted average over

an extended ring area defined by the width of the illuminating beam. The power spectral density

of the incoherent signal can be shown to have the form of a "Fredholm equation of the first kind"

(Marouf, et al. 1982):

s(_) = f ar _(_; r) G_(_) _D[_ - _(r)] • (5.5.14a)2 rpr 2

Here rpr is the distance between the scattering particle and the receiver, _q) is the deterministic

Doppler shift given by eq. (5.5.13), 6D[...] denotes the Dirac delta function, and G2(_) is the
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antennapower gain in the scattered direction _p_, i.e., at a small angle _ relative to the direct ray

(see Fig. 20b). The cross section (7 used here is dimensionless and is defined as the effective scattering

cross section per unit physical area of the rings. Note that the antenna power gain determines the

ring volume that contributes to S(v). In general, this spectral density must be convolved with a

probability-density function for the random component of the total Doppler shift caused by a random

component to the particle velocities over and above the Kepler velocity; however, in practice, this

random component of the particle velocity typically is 10 -s to 10 -7 of the Keplerian component

(Tyler 1987), so it can be neglected. It is useful to rewrite expression (5.5.14a) for the spectral

density of the received incoherent signal as a contour integral:

dl o_(/_;r)G_(fl) 1S(v) (5.5.14b)Jc r2 Iv ( )l '

where _vD(r) is the two-dimensional gradient (with respect to scattering particle position) of the

deterministic Doppler shift defined above, C is the contour of constant Doppler shift on which v = VD,

and dl is the element of arc length alottg C. Thus, the area bounded by any two contours v and

v+ dv of a Doppler map (defined as a collection of contours of constant Doppler frequency) identifies

the physical portion of the ring(s) that contributes a power S(v)dv to the total received incoherent

power. Ideally, one would like the Doppler frequency to be constant for a given radial distance r

over the illuminated portion of the ring. Then the contours of constant Doppler frequency would be

aligned with those of constant cross section _r, and expressions (5.5.14) could be used to recover the

cross section _, from the measured Doppler spectra (see Figure 24). For a given ring opening, this is

accomplished by optimizing the spacecraft trajectory. Of course, for a given spacecraft trajectory,

ideal alignment cannot occur globally; it will occur only for a narrow stretch of illuminated ring area

along the projected line of sight, the area over which the kernel G2/2rw 2 is maximum.

As noted earlier, the Doppler maps also enable isolation of the contribution from individual

ringlets, though typically with poorer resolution than achievable with the coherent signal. If the
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forward-scatteringcrosssectioncrisuniformovertheilluminatedareaof therings,andtheDoppler

contoursarealignedwith contoursof constantradialdistance(asindicatedin Figure24), each

Doppler frequency would correspond uniquely to a particular radial distance from the planet center

of mass. Any deviation from ideal alignment causes the contribution to the spectral power of the

incoherent signal of any isolated ringlet to fall below what it would be in the case of ideal alignment.

The narrower the ringlet, the greater is this decrease in spectral power, and the narrower is the

frequency range over which the ringlet contributes to the received power spectrum S(u). The

spectral power for a ringlet of a given width (narrower than the illuminated beam width) must be

computed using expression (5.5.14b), with some assumption for the radial profile of the ringlets

(e.g., Gaussian). Voyager 1 ring-occultation experiments at Saturn were able to achieve a resolution

of a few hundred kilometers in this way, with a 400-km-wide ringlet showing about a 1-dB drop in

its contribution to the power spectrum relative to what would have been expected from a uniform

scattering cross section over the illuminated portion of the rings (Marouf, et al. 1982; Eshleman, et

al. 1977).

The width and shape of the spectra [graphs of S(u) vs. u] for a given illuminated ringlet .are

determined by the narrower of the antenna beam width at the rings [equivalently, the gain G _ in

eqs. (5.5.14)] or the scattering cross section a. For particle sizes much smaller than the spacecraft

antenna (diameter Dr), the forward-scattering cross section o" is dominated by diffraction effects

and has a characteristic angular width ,_ )_/2a. In this case the scattering is nearly isotropic over

the narrower angular width ,,_ $/Dt of the transmitted beam, so the shape of the spectral envelope

is that of the transmitted beam. In this regime, little information is obtained about particle size

distributions. For particles larger than the transmitter (2a > Dr), the spectral envelope is determined
a

by the forward-scattering cross section of the particles. For particles whose sizes are comparable

to or larger than the transmitter antenna, there is a one-to-one relation between particle size and

observed envelope width. Under these circumstances it can be shown (Tyler 1987) that the largest
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particleshave the greatest influence on the shape of the spectral envelope. The observed envelope

reveals more than just an average equivalent size for the scattering particles; information also can

be gained about the first few moments of an unknown size distribution or about the parameters

of an assumed distribution (Marouf, et ai. 1982). Inference of this information and limitations on

obtainable information are discussed further below.

5.5.2c Measurement errors

Consider now the limits to information due to measurement errors. The primary error sources are

frequency fluctuations of the transmitting oscillator, antenna-pointing errors, and photon statistics

(or receiver thermal noise at radio frequencies). Oscillator frequency fluctuations limit the accuracy

with which the phase shift _ of the coherent component of the transmitted beam can be measured.

Antenna-pointing errors make it difficult to distinguish scattering-induced changes in received in-

tensity from changes induced by pointing fluctuations, and therefore lead to a required minimum

opacity r. Photon statistics, on the other hand, set a maximum opacity r beyond which the coherent

signal will be attenuated so much by ring scattering that it will not be detectable. These constraints

translate into bounds on the measurable scattering cross section cr and thence on the measurable

ranges of particle column density ne and size a.

The precision with which the phase shift # of the coherent component of the transmitted light

can be measured is limited by the spacecraft oscillator frequency stability 6v over a measurement

time tm as follows: /5¢ _> 27r tm 6r,. The Ultra Stable Oscillator on Voyager 1 at Saturn exhibited a

short-term ( <, 1000 sec) frequency stability of I to 4 x 10 -12, or _v ,-, 10 mHz at X band (Eshleman,

et al. 1977). This would cause a phase-measurement error of at least one cycle for measurement

integration times longer than about 100 seconds. Comparable fractional frequency stability for a

laser oscillator would require a linewidth lfu _ 300 Hz, resulting in phase-measurement ambiguities

of at least one cycle over measurement times longer than a few milliseconds. Accurate measurement
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andmonitoringof the phase shift _bover integration times of seconds or more would require extremely

stable laser transmitters, with tSv/v < 10 -15.

Fluctuations 6¢ in the measured phase shift result from fluctuations/Sne in the column density

of a slab of ring particles:

6¢ = T_ Re(A0) 6n_ (5.5.15)

[eqs. (5.5.10)]. A measurement integration time tm corresponds to a sampled distance Ar = vrtm,

where vr is the component of the spacecraft velocity parallel to the ring plane, here assumed per-

pendicular to the Earth-spacecraft line of sight. Hence the smallest detectable gradient tSns(r)/Ar

in column density (assuming Rayleigh scattering by particles of size a << _/2r) is related to the

spacecraft oscillator frequency stability tSv/v by

Ar - v, ha Re(A0) - v_ 41ra s \n-Y'L-T-1] _- 0.6--v, "_ , (5.5.16)

where the last relation holds for lossless particles of water ice with n _ 1.78 [eqs. (5.5.10) and

(5.5.11)]. If the spacecraft velocity vr "" 10 km/s and the average particle size a _ 1 cm, this gradient

would be on the order of 2.5 x 10 -3 cm -_ km -1 for a fractional frequency stability 6v/_, "_ 10 -11.

As noted above, the extinction caused by ring scattering must be great enough that the effects of

ring scattering can be distinguished from intensity fluctuations caused by unstable pointing of the

transmitting antenna toward the receiver. If the minimum detectable change in received power due

to pointing errors is 1%, the corresponding lower bound on the oblique optical depth rc (opacity

integrated along the light-travel path) is about 0.01, since e °°l _ 1.01. Ring material of greater

thickness will attenuate the coherent signal power more and more, until it is no longer detectable. The

upper bound on measurable opacity is determined by how weak a received signal can be detected

by the receiver. This is determined by photon statistics at optical frequencies and by receiver

thermal noise at radio frequencies. Consider again the Voyager spacecraft at Saturn. The receiving

antenna (on Earth) was 64 meters in diameter with a system noise temperature of 25 K, so thai
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kBT _- 3.5 x 10 -22 J. A transmitted power of 20 W at X band from a 3.7-m spacecraft antenna

at Saturn (10 AU or 1.bxl09 km), assuming an overall efficiency factor of 10%, would result in

a received power of 3.8 x 10 -1T W [Pr = Pt_?(DtDr/)_r)2], about 50 dB above the receiver noise

level for a 1-s integration time. A detectability threshold of 6 dB then sets the upper bound on

the measurable oblique opacity at about 10 (e -_° > 4kBT/Pr). This upper bound scales with

transmitter power Pt, overall efficiency 7, transmitter and receiver antenna diameters Dt and Dr,

distance r between transmitter and receiver, receiver temperature T, and wavelength A as follows:

7"c < 10 + In 2 T 0.1 3_n 64m r "" "
(5.5.17a)

For Voyager 1 at Saturn, the lower and upper bounds on the ordinary opacity 7" - rc sin 00 were on

the order of 0.001 and 1, respectively, the latter consistent with the above parameter values and a

ring opening 00 of approximately 6 °. For Voyager 2 at Uranus, the rings were almost fully open with

80 _- 82 ° (Tyler, et al. 1986; Tyler 1987). The corresponding upper limit on measurable ordinary

or oblique opacity for the Uranus ring-occultation experiments (r ,,_ 20 AU) was about 9.

For comparison, consider a 10-m optical receiving telescope limited primarily by photon statis-

tics. A power of 1 W at 1-pm wavelength transmitted through a 1-m telescope on a spacecraft

at Saturn, assuming an overall efficiency factor of 0.1, would result in a received power of about

4.4 x 10 -1_ W. With hv ,v 2 x 10 -19 J and assuming Poisson photocount statistics, this corresponds

to a signal-to-noise ratio of about 37 dB in 1 second. Assuming a detectability threshold of 6 dB,

this sets an upper bound on the oblique opacity of about 7, which scales with parameters as

[D, Dr 1OAU (Pw _ )_ )1/_]r_ < 7 ÷ In _m lOm r 0.1 1;m ' (5.5.17b)

With more modest parameters such as a laser transmitter power of 100 milliwatts, a 1-m receiver

aperture and 30-cm transmitter aperture, and a 2% overall efficiency, the upper bound on measurable

opacity would be about 1.5.
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Totranslatetheseconstraintsonthecomplexextinction(r and _b) into bounds on the particle

column density n, and effective particle radius a, return to expressions (5.5.11) for the complex

extinction. Assume here for illustration that the particles all are roughly the same size, and that

their composition is lossless water ice with a refractivity p _ 0.78. Figure 25 is a plot of the column

density against the ratio of particle radius to wavelength for two different wavelengths: 3.6 cm (X

band) and 1 pm (optical). Four curves are drawn on each plot: one is the curve for ¢ = 27r, which

exists only for a/A << 1/27r (recall that as the geometric-optics limit a > A/2zr is approached,

¢ ---* 0). The second and third bound a region defined by 0.001 < 7"< 1. A fourth curve delineates

a region corresponding to detection of the incoherent signal derived from specific constraints on

SNR. for given integration time, and sets a lower bound on the forward-scattering cross section (see

figure caption for more detail). The changing slopes for the two opacity curves reflect the different

dependences on particle size in the Rayleigh and the geometric-optics limits, as described above.

If the lower and upper bounds on opacity for detection of a coherent signal are 0.001 and 1, as

was the case for Voyager 1 at Saturn, then one can identify the different regions on these plots as

follows: Above the r = 1 curve, the coherent signal has been scattered so strongly that it is too

weak to be detected by the receiver. Below the r = 0.001 curve, the coherent signal differs so little

from its "free- space" value (the signal reaching the receiver that did not pass through the ring

material) that it cannot be distinguished from intensity changes due to fluctuations in the pointing

of the spacecraft transmitter toward the receiver. Between these two curves, in the lined region,

the coherent signal can be detected, and the measured amplitude information gives information

about particle size, particularly for particles much smaller than the reduced wavelength of the light

being transmitted. For these small particles, the phase shift of the coherent wave due to differential

refraction effects can be measured provided it is on the order of one cycle or larger, which corresponds

to the region above the _b = 2r curve. Both phase changes and amplitude changes are detectable

in the intersecting region marked by cross-hatching. If the particles are lossy (e.g., silicates with

refractive index n = 2.32 + i0.03), the Rayleigh-limit behavior differs from that shown in Figure 25
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in that the opacity curves rise less steeply with decreasing particle size [see eqs. (5.5.12)].

For scattering by particles whose sizes are comparable to the reduced wavelength, neither the

Rayleigh-scattering nor the geometric-optics limit applies. Information about particle sizes is ob-

tained best from differencing measurements made with light transmitted at different wavelengths,

since in this regime the ratio of opacities at different wavelengths is maximally sensitive to particle

size (Eshleman 1973; Eshleman, et al. 1977).

How is information inferred from the incoherent signal? If the opacity is not too large (r_ < 1 or

r < sin _0, the strength and spectrum of the incoherent signal can be modeled fairly accurately by

assuming that the transmitted light is scattered only once before traveling on to the receiver. In this

case, the incoherent received power exhibits strong dependence on particle size only for sizes much

larger than the reduced wavelength of the transmitted light, and the strength and spectral properties

are determined by diffraction effects, which produce a forward-scattering lobe of angular width

.., _/a. In this regime, the forward-scattering cross section a(_ = 0) = a(0) scales with the fourth

power of particle size a (see, e.g., van de tIulst 1980). Physically, this says that a ring particle larger

than the wavelength intercepts from the incident wave a total power proportional to its geometric

cross-sectional area, but rescatters that power in the near-forward direction in proportion to the

square of its cross-sectional area. Away from the forward diffraction lobe, the scattering cross section

does not have as simple an analytical or physical interpretation. The forward-scattering cross section

reaches a maximum when the opacity r is on the order of sin 00 (van de Itulst 1980), but for larger

v, multiple scattering processes begin to dominate, and calculation of the scattered signal strength

and spectrum becomes considerably more complicated. For increasing opacity, the cro_ section

a becomes less sensitive to the angle fl between the spacecraft-receiver and the particle-receiver

lines of sight. For opacities larger than about 10sin00, the scattering has spread out significantly

from the forward direction, and a decreases rapidly toward its isotropic limit O'iso_ sin 00. Tractable

approximate solutions exist for the near-forward scattering cross section a(0) as a function of opacity
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when multiple scattering dominates (van de Hulst 1980), provided the opacities are small enough

that (r(0) >> Isin001; this inequality typically holds for the following ranges of particle sizes a,

forward scattering angle fl, and opacity r: a > 3_; _ < 0.6,Va < 12.7 arcseconds (__ 3.5 millidegrees);

r < 10 sin 60 (Marouf, el al. 1982). Given bounds on opacity of 0.001 < r < 1 for signal detectability

(as applied, for example, to the Voyager 1 ring-occultation experiments at Saturn), Figure 25 shows

that the forward-scattering cross section would be large enough for the incoherent signal to be

detectable only for a > 10)_.

Thus, in summary, detailed information about particles whose sizes are much smaller than the

wavelength of the transmitted light can be obtained from measurements of both the amplitude and

the phase shift of the coherent component of the transmitted light. Information about particles

whose sizes are on the order of the wavelength is more elusive; the best approach uses differential

measurements of the phase of the coherent light at different frequencies , since in this particle-size

regime the opacity is strongly dependent on wavelength. Absence of strong differential effects would

indicate a predominance of particles much larger than the wavelength. Finally, information about

particles much larger than the wavelength of the transmitted light can be obtained from the strongly

forward-scattered, Doppler-broadened, incoherent component of the transmitted light. Two pieces

of information generally are available in this regime of large particle sizes: (1) the opacity inferred

from extinction of the coherent signal and (2) the forward-scattering cross section estimated from

spectral measurements of the incoherent signal. Together, these data determine a unique particle

size. Even if extinction of the coherent signal is not detectable clearly, it may be possible to obtain

size information from the incoherent signal. In this large-particle regime (the geometric-optics

limit), the scattering becomes so tightly directed in the forward direction that enough power may

be collected by the receiver to detect the otherwise relatively weak incoherent signal. If the particle

sizes are much larger than the transmitter antenna, so that the forward lobe is entirely contained

within the antenna beam, size information can be extracted directly from the (spectral) width of
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the spectrum. For the Voyager spacecraft transmitting at 13 cm and 3.6 cm through a -_ 3.7-m

antenna, it was possible to obtain information about ring particle sizes ranging from _ 1 mm to

,-, 20 m. Addition of a laser transmitter on board such a spacecraft could provide information about

particle sizes in the submicron regime from measurements of the amplitude and phase of the coherent

signal (extinction and differential refraction) and about particles in the meter-or-larger regime from

analysis of the spectral characteristics of the incoherent signal as well as the extinction of the coherent

signal. Use of two or more laser wavelengths could provide information about particle sizes between

these extremes. In view of the apparent prevalence of centimeter-to-meter size particles in planetary

rings, there is no strong overall argument for the use of laser transmitters instead of radio-frequency

transmitters for obtaining information about particle sizes and size distribution; however, their use

clearly could complement and enhance radio measurements.

5.5.2d Occultation experiments in an uplink mode

As promised at the start of section 5.5.1, brief consideration is given now to the advantages and

possibilities of performing atmosphere- and ring-occultation experiments in an uplink mode, with

the occulted spacecraft functioning primarily in a receiving and data-processing capacity. Operation

in a downlink mode has offered the advantage that the data handling could be done on the ground.

The major disadvantage to operating in a downlink mode is the limited transmitter power available

from a spacecraft -- 1 to 20 W of S- or X-band power, perhaps 1 to 5 W of laser power. (Note

that relative output powers of radio and optical transmitters do not indicate relative performance

of microwave and laser systems for experiments such as those described in this report!) In contrast,

ground-based radio-frequency transmitters routinely radiate 20 to 100 kW, and ground-based solid-

state lasers pumped by diode ariays are projected to be capable of frequency-stabilized operation

with average (as opposed to peak) output powers in the vicinity of 1 kW by the mid-1990s (Byer
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1988).Tyler(1987)haspointedout that operationin anuplinkmode,evenif it providedonlya

modestimprovement(afactorof 100,say)insensitivity,wouldenablemuchfinerstudyof Titan's

surfaceandthestructureof Saturn's"RingB," aswellasstudiesof othersolar-systemobjects.

Generallyspeaking,useof anEarth-vicinitytransmittertogetherwithaspacecraftreceiverorbiting

a planetor satellitecouldenhancemeasurementsof atmospheres,rings,andsurfaceproperties

significantly,becauseof thegreaterflexibilityfor studying temporal and spatial variations, the

greater sensitivity, and the improved oscillator stability. The primary obstacle to operation in an

uplink mode is the large volume of data that must be processed on the spacecraft (,,_ 1011 to

1012 bits for the Voyager 1 experiments at Saturn, according to Tyler 1987). The handling of this

volume on the spacecraft is problematic because of limitations on power consumption, size and

mass of hardware, and data storage capacity. Recent advances in integrated circuit technology and

digital signal processing techniques may make uplink experiments at radio or optical frequencies

more practical in the future. As progress in high-power frequency-stabilized lasers continues, uplink

experiments at optical frequencies may emerge quickly as a powerful complement to traditional

downlink radio-frequency occultation experiments.

5.5.3 Surface-scattering experiments

Scattering of electromagnetic waves off the surface of a planet or satellite permits determination

of the surface dielectric constant and surface roughness. (Here "surface" refers to the upper layers

that contain the material responsible for reflection, typically on the order of a few centimeters

in depth for radio-wave reflection.) Historically, such experiments have been performed with the

transmitter on the spacecraft and the receiver on Earth. The dielectric constant is inferred from

the surface reflectivity, which in turn is inferred from the total power in the "echo," the spectrally

broadened signal obtained from specular reflection at a point on the surface. The surface roughness
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is indicated by the spectral width of the echo; roughly speaking, an increase in surface roughness

increases the spectral width of the echo. More specifically, for a homogeneous and isotropic surface

described by Ganssian statistics, the spectral width of the echo is proportional to the rms slope,

or tilt with respect to the mean surface (Simpson, et al. 1979). Homogeneity of the surface means

that the width of the echo spectrum is independent of reflectivity; and, in general, the reflectivity

is independent of roughness to second order. Thus, the roughness and dielectric constant can be

derived independently.

Measurement of the dielectric constant gives information on the density and composition of the

surface material [Tang, et al. (1977) discuss this for Mars]. If the surface is modeled as a packed

powder, the Rayleigh mixing formula (Gold, et al. 1970) can be used to relate the dielectric constant

to the bulk density of the reflecting material. The dielectric constant _ can be determined directly

from measurement of the Brewster angle 0B by the relation _ = tan20B, where the Brewster angle is

that angle of incidence for which the reflected wave is linearly polarized in the plane perpendicular

to the plane of incidence, thus displaying equal power in oppositely rotating circular polarizations.

Composition, density, and roughness are characteristics relevant both to geologic models of surface

structure and to practical aspects of placing landers and operating rovers.

Typically in radio surface-scattering experiments, the beam from the spacecraft is aimed toward

the point on the planet or satellite surface that results in a mirror-like (specular) reflection toward

Earth. The roughness of the surface causes multiple rays to be reflected from a small region about the

mean specular point. Spectral broadening of the received signal (echo) arises because of the small

differences in the rates of change of the individual path lengths. Underestimation of the surface

roughness can occur either because of noise in the data or because of uneven illumination of the

scattering area. Underillumination can result at radio frequencies because of the tapered pattern of

high-gain radio-frequency antennas. Often the problem of underillumination can be minimized by'

proper choice of geometry. Overestimation of the surface roughness will result from any artificial

184



broadening of the echo. This might occur, for example, because of uncorrected frequency drift in

the transmitted signal over the averaging interval, which typically is on the order of 10 seconds.

As an alternative to tracking the region of specular reflection, scattering off a particular point on

the surface can be studied. Here, underillumination is not a problem; in fact, a narrow beam width

is an advantage in that it permits suppression of the echo from neighboring regions. However, more

accurate pointing is required. At radio frequencies, typical beam widths used for this purpose are 20 o

with pointing tolerances of 10% (Anderson, private communication 1989). (The diffraction-limited

beam width for a 10-cm aperture at X band is 200 or 0.36 rad.)

The size of the surface structure sensed is determined by the wavelength used; shorter wave-

lengths respond to smaller-scale roughness. At X band, most of the scattering results from structure

between 3 cm and about 30 meters in size, 5 meters being an average effective scale size (Tyler, et

al. 1971). At optical frequencies (A _- 1 /Jm), most of the scattering could be expected to result

from structure between 1 /_m and _ 1 mm in size. For engineering studies of the surface for lan-

der/rover application, laser scattering would likely have a finer resolution than required, and X-band

or Ks-band (32-GHz) scattering studies might be more appropriate. Studies performed at multiple

wavelengths simultaneously (to ensure that reflection occurs from the same physical surface area)

could provide useful information on the size and density distributions of scattering particles.

Requirements on oscillator frequency stability are not severe for surface-scattering experiments.

It is only necessary that the oscillator not drift appreciably relative to the broadening inherent in

the specular reflection. For a transmitter of diameter Dt located a distance D from the surface of a

planet which is at a distance r >> D from the receiver, the frequency spread 6v due to the spread

in path lengths is at least as large as 2LOv/r, where 0 is the beam width of the transmitter. For a

diffraction-limited beam, # _ A/Dt, hence the requirement on laser fractional frequency stability is

6t_ < 2 D A_ (5.5.18)'
v ~ rOt
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Hence oscillator fractional frequency fluctuations 5t,/v must be known or controlled to less than

2DOlt. Using values for D from Table 5.5.1, one finds that for surface-scattering experiments at

Venus, assuming a closest-approach distance of 0.3 AU, a frequency stability _L,/v _< 10 -5 would

be required at X band (Dr = 3.7 m) and 6r,/v _< 2 x 10 -9 at optical wavelengths ($ = 1 pm,

Dt = 0.5 m). At Jupiter, the corresponding stability requirements would be about a factor of 5

more stringent -- _/v ",_ 2 x 10 -6 at X band and 4 x 10 -l° at 1 pm. If the optical beam width is

widened, a broader range of Doppler shifts will be produced, and the requirement on laser frequency

stability can be eased. However, a narrower beam width (8opt _ A/Dt ~ 2 x 10 -s, vs. 8x ~ 0.01)

enables finer probing of the surface. Measurements using synthetic aperture techniques would put

more stringent requirements on frequency stability of both transmitter and receiver; this author has

not examined this possibility nor found any such experiments proposed.

For surface-scattering experiments, intensity fluctuations of the oscillator must be kept reason-

ably small, since estimates of dielectric constant and inferences about density from surface reflectiv-

ity depend sensitively on the accuracy of intensity measurements made on the reflected signal. For

radio-frequency surface-scattering experiments on Mars, for example, errors of 1 dB in total received

power result in errors in estimates of the dielectric constant of about 14%, and these propagate to

errors on the order of 17% in density (Anderson, private communication 1989; Gold, et al. 1970).
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6. ADDITIONAL SCIENCE APPLICATIONS AND BENEFITS

This report has described the general kinds of measurements enabled by frequency-stabilized lasers

and related technology (e.g., phase-matching laser transponders), and analyzed several prominent

scientific applications that require or would benefit from the measurement precision achievable with

stable, optical-frequency oscillators. With the groundwork laid in chapters 3 and 4 and the detailed

examples given in chapter 5, it is possible to imagine and evaluate numerous additional scientific

applications involving frequency-stabilized lasers. Most of these will be left to the reader. However,

a few obvious ones will be pointed out in this chapter. Each of the ideas suggested below could be

analyzed and evaluated more carefully, as was done for the applications discussed in chapter 5.

6.1 Solar-system mission enhancements

Much of the science to be gained from using frequency-stabilized laser technology in space will come

from missions throughout the solar system. Before discussing additional specific science applications

or experiments, consider some of the general ways in which frequency-stabilized laser technology

can be used to enhance such missions. These fall into three areas: telemetry (communications),

navigation and tracking, and instrumentation. They are discussed in turn below.

6.1.1 Coherent optical communications

The potential benefits of optical over microwave systems for deep-space communications have been

discussed in many other places (e.g., Sokolowski and Lesh 1987). Chief among the telemetry ad-

vantages are higher data rates and wider communication bandwidths. For example, with modest

coding techniques, a 1-W laser firing through a 30-cm telescope from Saturn could provide data

rates of 200 kilobits per second or more with bit-error rates of 10 -6. Compelling additional benefits

include reduced size and mass for the spacecraft transmitter and receiver hardware, and reduced
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powerrequirementson the spacecraft transmitter, which can translate to reduced requirements on

total spacecraft power.

These advantages apply to both incoherent and coherent communication systems. Incoherent

communication systems use "direct" photodetection of the incoming laser signal, while coherent

communication systems combine the incoming laser signal with a strong local-oscillator laser before

photodetection. The performance of incoherent systems depends primarily on the number of signal

photons detected; it is insensitive to the phase of the incoming light and only coarsely sensitive to

the frequency. Typical filter bandwidths for deep-space optical direct-detection systems would be

5 to 10 Angstroms, or 150 to 300 GHz at 1-pm wavelength. These provide a limited capability

for rejection of background light. In contrast, the process of combining the incoming signal with a

frequency-stable local-oscillator signal in coherent, or heterodyne, detection enables a high degree

of spatial and spectral discimination. Coherent detection can perform well under high-background

conditions, where signal-to-noise ratios would be unsuitably low for direct detection, both because

of this high degree of background rejection and because of the signal amplification that results from

combination with the strong local-oscillator signal. For planetary missions, coherent detection could

enable optical communications with a spacecraft to perform well even when the spacecraft is within

a few degrees of the Sun or a bright planet.

Key ingredients to full exploitation of the possibilities of coherent optical communications are a

frequency-stabilized local oscillator and companion frequency-stabilized transmitting laser, at both

the spacecraft and the receiving station. The degree to which the frequencies can be controlled has

important impact on the kind of information-coding schemes that can be used. For example, phase-

and frequency-shift keying can provide much better communication performance than the on-off

keying or pulse-position modulation schemes commonly used for direct detection; but they require

stability and control of the phase and frequency of the lasers (Yamamoto 1980; Okoshi 1986).
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6.1.2 Remote optical navigation and tracking

The attraction of improved telemetry performance with the use of laser communication links to

spacecraft, as well as reduced size, mass, and power requirements over traditional radio-frequency

systems, provide strong impetus to consider missions involving only laser communication and nav-

igation systems or hybrid systems using both laser and radio-frequency technology. Hence studies

and development of remote optical tracking techniques are under way (see, e.g., Schumaker 1988,

Folkner and Finger 1990) that would provide angular as well as range and Doppler information, with

performance comparable to that achieved currently by NASA's Deep Space Network for spacecraft

carrying S- and X-band transmitters. Optical tracking and navigation presents both advantages

and disadvantages compared to radio-frequency operation. One benefit is the potential for making

real-time angular measurements from a single station. Another is the possibility of direct tracking of

spacecraft relative to their targets when the targets are sunlit solar-system bodies. An obvious dis-

advantage, at least for ground-based operation, is atmospheric degradation and limited performance

during daylight hours.

Most of the optical tracking techniques currently being studied for use with planetary missions

would be appropriate for use with incoherent communication links. One of the strongest candidates

is a "filled-aperture" astrometric technique (as opposed to dilute-aperture, or interferometric, tech-

niques) that uses a telescope with a finely ruled grating at its focal plane. Such instruments could

be used to measure the angular separations between a laser-carrying spacecraft (or orbiter, lander,

or rover) and nearby reference stars or other laser-carrying spacecraft. They show promise of an-

gular measurement accuracies of 10 to 20 nanoradians (a few milliarcseconds) from the ground and

subnanoradian accuracies from space, being limited primarily by atmospheric effects on the ground

and laser faintness from space. These ground-based accuracies have been demonstrated for stars

of apparent visual magnitude my = 11 or brighter (the brightness of the Sun if it were 150 par-

secs = 3 × 107 AU away from Earth) (Monet and Dahn 1983; Gatewood, et ai. 1980; Gatewood
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1987;BuffingtonandGeller 1990). A l-W, 0.5-/_m wavelength laser firing through a 30-cm tele-

scope at the distance of Saturn would also have an apparent visual magnitude of 11; that is, viewed

through a detector whose response function is similar to that of the human eye, the laser, despite

its extreme monochromaticity compared to a star, would produce approximately the same detected

photon count as a star of apparent magnitude 11 (Schumaker 1988). These instruments typically

have fields of view no wider than about 1'. Since there are on the average only about 1.3 stars

as bright as mirror = 11 per square degree in the sky (Allen 1973), highly accurate (better than

10 to 20 nanoradians) remote optical navigation may require instruments with wider fields of view

or better sensitivities. However, for many solar-system missions, remote navigation accuracies of

several tens of nanoradians is adequate when augmented by onboard optical techniques.

As was pointed out in section 5.1, optical interferometers being developed for precision astrom-

etry and astronomical imaging may provide accuracies of several tens of picoradians for space-based

angular measurements among optical sources. Interferometric techniques can measure angular sep-

arations over wide fields (30 to 90°), which is difficult or impossible with filled-aperture techniques.

Unlike telescopes, they are free from the requirement that a reference star be in the field of view simul-

taneously with the target, which might be a laser-carrying spacecraft. Sophisticated laser metrology

systems are required to achieve the high levels of accuracy possible with such instruments.

While navigation to a planet or satellite may not require nanoradian or better accuracies, the

ability to track spacecraft this accurately relative to stars or solar-system objects, or landers and

rovers relative to orbiters, would enable a wealth of possible science experiments. Some of these are

outlined in section 6.2 below. Frequency-stabilized lasers would play an important part in enabling

precise tracking of laser-carrying spacecraft in at least two different ways: First, they are required

for coherent range- and range-rate (Doppler) tracking (see section 4.2.1); second, they are a key

element for instrument metrology in optical interferometers that would be used for high-accuracy

angular tracking (see section 5.1). The former application also would benefit from the development
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of coherent laser transponders, which would receive, amplify, and retransmit laser signals, thus

reducing signal losses due to propagation (i.e., received power would fall as 1/r 2 for transponders

instead of 1/r 4 as is the case for reflectors; see subsection 4.1.4a).

6.1.3 Improved instrumentation

Certainly one of the most important benefits associated with the use of lasers and laser commu-

nication links with solar-system missions is the capacity for higher data rates. For example, the

high-resolution imaging spectrometer (HIRIS) planned for the Earth Observing System will be un-

able to operate at full capacity because, while its internal data rate is on the order of 500 Mbits/s,

its maximum external data rate is only 300 Mbits/s (Butler, et al. 1987b). The higher data rates

afforded by laser telemetry links would also permit simultaneous operation of several instruments.

Several kinds of onboard instruments related to such tasks as navigation, pointing, and maneu-

vering would be enhanced by coherent (i.e., frequency-stabilized) laser-based systems. For example,

coherent lidar could be used both to aid space-based operations and general vehicle maneuvering
J

and to perform science experiments in planetary atmospheres and rings. Extremely precise optical

rotation sensors (e.g., laser gyros) could be used for a variety of engineering and scientific purposes.

6.2 Solar-system science, astronomy, and astrophysics

This broad category encompasses most of the applications discussed in this report. An enormous

number and variety of important scientific measurements become possible with the existence of

coherent, quasi-monochromatic laser links between spacecraft at planetary distances, or even just

in Earth orbit. This section reviews briefly some additional applications in this category and some

extensions of those already discussed. The grouping of these applications is somewhat arbitrary, since

there can be significant overlap among them. One potentially rich field of scientific measurements
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thatis not discussed here consists of experiments involving the simultaneous use of laser and radio

links. In such experiments, what would constitute "noise" with the radio or laser link alone, can

become "signal" when the possibility of using both links simultaneously exists. For example, the

immunity of laser links to plasma-induced phase scintillation would enable them, when used in

conjunction with radio links, to calibrate these and other charged-particle effects, and thus provide

information about electron densities in planetary ionospheres and the solar corona.

6.2.1 Improved ephemerides

Since this chapter began by considering mission enhancements, it seems appropriate to begin this

discussion by noting the important benefit of improved ephemerides of solar-system bodies. This im-

provement could arise both from improvements in optical galactic and extragalactic reference frames

achieved through high-accuracy optical astrometry and from precise optical tracking of laser-carrying

spacecraft near solar-system objects. Frequency-stabilized laser technology would contribute to both

by enabling accurate, coherent Doppler tracking of spacecraft throughout the solar system or by en-

abling high-precision optical astrometric interferometers, which could be used both to track the

angular motion of the spacecraft and to improve the reference-frame catalog through systematic

astrometric measurements.

6.2.2 Planet and satellite masses, gravity fields

Radio-tracking observations have long been used to gain information about the gravitational fields

of planets and satellites [see, e.g., Anderson, et al. 1974b (Jupiter); Sjogren, et al. 1975 (Mars);

Sjogren, et al. 1980 (Venus); Tyler, et al. 1982 (Saturn); Tyler, et al. 1986 (Uranus)]. Total

masses and higher mass moments are inferred from fly-by trajectories, and more detailed information

is gained with orbiters. The description given in section 5.3 of the use of a laser interferometer
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amongorbitingspacecraft to map a planet's gravity field is appropriate here. In general, given

comparable tracking accuracies (both angular and line of sight), optical-tracking observations and

radio-tracking observations would provide similar information. Given comparable accuracies, the

advantages of making these observations optically would stem primarily from the reduced size,

mass, and power requirements, and reduced atmospheric drag effects (see, e.g., section 5.3 and

section 6.1). Prior to recent technology advances leading to high-power, frequency-stabilized lasers

suitable for autonomous operation in space, radio-frequency measurements have, in general, offered

greater potential measurement accuracies. But, as the planet gravity-field-mapping example in

section 5.3 showed, given laser power and frequency stability enabled by current technology, laser

measurements could provide better resolution and sensitivity in characterizing nonuniformities in

a planet's gravity field. Of course, there also would be significant scientific advantage to making

measurements simultaneously at both radio and optical frequencies in order to calibrate the errors

for the two systems. For example, plasma-induced phase noise may dominate the radio measurement

error, whereas photon statistics or laser frequency stability could dominate the optical measurement

error.

For terrestrial planets, both gravitational and topographic data are used to determine the

degree of isostatic compensation of the surface topography (Sjogren, et aL 1975, 1980). In isostatic

equilibrium, which holds approximately for Earth, gravity "roots" would exist under mountains,

and "antiroots" would exist under the basins. Topographic data are used to subtract the estimated

"external" contributions to the gravity field, and gravity data are then used to determine the degree of

isostasy. Or, if isostasy is assumed, then the presence of gravity anomalies could indicate convection

currents or "primordial" density variations deep within the planet. If gravity data indicate that the

topography is not compensated, inferences can be made about the elastic strength of the interior and

thence about constraints on the radial temperature profile. For example, if the inferred temperature

profile is unreasonable (e.g., temperatures are too low), this would indicate that viscous stresses

associated with convection play a part in supporting the topography; the accuracy with which their
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magnitudescanbeestimateddependsdirectlyontheaccuracyof thegravitydata.

TopographicdatatypicallyareobtainedwithEarth-basedphotographyandradar,andstellar

occultations.Laser(lidar) altimeters used on orbiters or during fy-by missions could improve on

all of these methods. And, if it were used together with radar, information could be obtained about

the surface composition by comparing both the light-travel time (depth of penetration) and the

backscatter cross sections.

For the giant planets, gravity data can be used in two ways: to deduce the density distribution

and to put constraints on composition. In these larger planets, deviations from a perfectly spherically

symmetric gravity field arise primarily from rotation. The deviation from sphericity is greatest if the

planet is homogeneous (constant density). Variations in rotation rate with latitude and depth into

the atmosphere reflect nonuniformities in the density distribution within the planet. When combined

with independent information on rotation rate, gravity data can be used to make inferences about the

density distribution. Precise tracking of spacecraft during close fly-bys of the giant planets can give

information about several higher moments of the gravity field, in addition to the total mass; these,

together with observed radii and inferred density distributions, put constraints on the composition.

For example, it was determined in this way that Jupiter is not of solar composition, since its large

mass moments require larger fractions of elements heavier than helium than are consistent with solar

abundances (Eshleman, et ai. 1977).

Close fly-bys of satellites, especially the more massive satellites (e.g., the Galilean satellites

and Titan), could permit determination of the second-degree harmonics in their gravity fields and

hence determination of the differences among their principal moments of inertia. By comparing the

deformations due to rotation and to tidal forces, one can estimate the degree of central condensation

and determine the degree to which the satellite is in hydrostatic equilibrium. This, in turn, puts

constraints on possible interior models (Hubbard and Anderson 1978).
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Finally,cometarymassescouldbedeterminedduringrendezvouswithaspacecraftbycombin-

ing(1)Earth-derivedastrometricinformationontherelativepositionsof thecomet,spacecraftand

Sun(hencetherelativesolartidal pullbetweenspacecraftandcomet);(2) measurementsof the

spacecraft-cometrangeobtainedwithlidarorradaronboardthespacecraft;and(3)measurements

ofthecomet-induceddeceleration(andanyothernongravitationalaccelerations)on thespacecraft

obtainedwith onboardaccelerometers.Thecomet-spacecraftaccelerationis determinedby sub-

tractingtheinferredsolartidalaccelerationandnongravitationalaccelerations;this,combinedwith

knowledgeofthespacecraft-cometrangeandspacecraftmass,determinesthecometmass(Anderson,

privatecommunication1989).

6.2.3Atmospheric studies

Elsewherein thisreport,techniquesinvolvingfrequency-stabilizedlasershavebeendiscussedthat

areapplicableto studiesofEarth'satmosphere.TheseincludecoherentDopplerlidarmeasurements

of velocity-vectorcomponentsof particulates(sections4.2.2and5.4);coherentforward-scattering

measurementsof particlesizesandsizedistributions,numberdensities,andshapesof particulates

(section5.5.2);andcoherentforward-scatteringmeasurementsto obtainatmosphericrefractivity

profilesthroughmeasurementsof thecomplexextinction(sections5.5.1and5.5.2).Thelast tech-

niqueisof usein monitoringvariabilityin verticaltemperatureandpressureprofilesfor weather

forecasting,aswellasforstudyingvaryingchemicalcontent(e.g.,ozonelevels)in theatmosphere.

Spectroscopicmeasurementsbenefitin anobviouswayfromimprovedfrequencystability, par-

ticularly absorption measurements. It is equally important for such measurements that the laser

sources be tunable, so that they can be tuned to resonance with particular molecular transitions

and then tuned away from resonance to establish zero-concentration baselines. The narrower the

line width of the laser, the more sensitive is the information obtainable about absorption or emis-
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sionline shapes, which in turn can provide more detailed information on atmospheric pressure and

temperature profiles. Many of these types of measurements are being, or have been, performed in

Earth's atmosphere, while others will be enabled by the development of space-qualifiable, compact,

frequency-stabilized lasers. For example, the use of stable lasers on geostationary or low-Earth-orbit

platforms would enable measurements of long-path transmission through the atmosphere, including

various experiments involving atmospheric occultation of the Sun to aid in monitoring the chemical

composition of the atmosphere. For detailed descriptions of many proposed Earth-related experi-

ments and a rich source of ideas for further uses of frequency-stabilized laser technology, the reader

is referred to the series of study reports compiled by the Science Steering Committee for the Earth

Observing System (Butler, et al. 1987a-f).

Detailed analyses of various experimental approaches for studying Earth's (or other planetary)

atmosphere, some of which use lasers and others that use radar but could benefit from extension to

coherent laser techniques, can be found in the following references, in addition to those already cited

throughout this report: Churnside and Clifford 1988 (refractive turbulence profiling); ttansen 1980

(laser scattering off atmospheric particles); Ismail and Browell 1989 (water-vapor measurements us-

ing lidar); Kavaya and Menzies 1985 (lidar aerosol backscatter measurements); Kazovsky 1984a and

1984b (laser forward scattering off particles); Kazovsky and Kopeika 1983 (coherent laser techniques

through turbid media such as rain and snow); Kyle 1989 (high-resolution laser imaging); Lindberg

and Gillespie 1977 (atmospheric dust refractivity measurements); Lindberg, ef al. 1984 (lidar deter-

mination of extinction through clouds); and Megie and Menzies 1980 [Differential Absorption Lidar

(DIAL) for measurements of atmosphere compo6ition]. A layman's overview of some of the kinds of

measurements of particular relevance to Earth studies also can be found in Covault (1989).
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6.2.4 Cloud studies

Techniques for probing cloud microstructure include laser scattering measurements to gain informa-

tion on the sizes of cloud droplets, optical imaging to gain size and structural information about

precipitation elements, polarization measurements to differentiate liquid from ice in clouds, and

measurements of liquid water content. The most revealing information about the microstructure of

clouds is knowledge of the sizes, size distribution, number density, and shapes of liquid or solid cloud

and precipitation particles ("hydrometeors"). Cloud particles vary widely in size (0.1 pm to l0 mm)

and number density (10 -4 to 103/cm3), so a single instrument or measuring technique typically is

insufficient. Observations from aircraft or Earth orbit are required for clouds well above ground level,

because of the large size of cloud forms and the fast motion of the particles. However, measurements

from aircraft are difficult because of the electrically and acoustically noisy environment.

Optical measuring techniques offer a favorable alternative to conventional in situ "physical

sampling" measurements in clouds, in which particles are captured on substrates or instruments are

inserted into the cloud and particles aspirated. This kind of sampling disturbs the airstream, it can

provide data only through a few sections of a cloud, and its analysis is slow and tedious. In contrast,

light-scattering measurements are efficient, relatively nonintrusive ways to count and size cloud par-

ticles in the 1- to 50-pm range; larger particles can be studied using in sittt imaging techniques such

as photography and holgraphy. The only important characteristic not readily accessible with optical

techniques is liquid-water content, although this can be inferred indirectly through integrations of

measured size distributions. Fog measurements require maximum sensitivity at sizes near 1 pm,

while cloud-droplet measurements require maximum sensitivity around 10 to 20 pm. Thus, the in-

struments for these two purposes generally do not overlap. Meteorological emphasis historically has

been placed on the analysis of cloud droplets, although laser-scattering methods have been proposed

that would be useful for both regimes (Silverman, et al. 1964; Knollenberg 1981).

The principles behind laser scattering measurements on cloud or fog droplets are similar to tho6e
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describedin section 5.5 for atmosphere- and ring-occultation experiments. For the droplet sizes

typical of clouds and fogs, forward scattering predominates (Knollenberg 1981). Since the refractive

index for clouds is fairly well known, a great deal of information can be obtained about sizes in

the micron range with forward-scattering laser measurements. Typical laser scattering instruments

used in cloud-physics measurements are described in Knollenberg (1976). These instruments are

designed to measure velocities between 10 and 125 m/s and measure particle sizes in the range 2

to 30 #m. To date, almost all these instruments have used gas lasers, particularly helium-neon

(He/Ne) devices (Knollenberg and Luehr 1975). Gas lasers require high voltages and have very

limited lifetimes, and reliability has been a problem. For example, the flight of the ATMOS Fourier

Transform Spectrometer on SPACELAB 3 in 1985 was terminated by a failure in the He/Ne laser

power supply after barely three days in orbit. Instruments proposed for Earth-orbiting platforms,

such as the Earth Observing System, must be able to operate continuously for several years. It is

likely that diode-pumped solid-state lasers will replace these gas lasers because they require lower

voltage, are smaller in size, more reliable, longer-lived, and have the potential for greater output

power and better frequency stability. Improved frequency stability translates to improved spectral

resolution for spectrometer measurements. Shorter wavelengths (e.g., 0.5 pm instead of 1 pm)

are preferred because sampling intervals are defined as equal intervals of wavelength; hence, better

control can be obtained with equivalent frequency stability at shorter wavelengths.

6.2.5 Cosmic and interplanetary dust

Interplanetary dust particles (IDP) have several possible origins (e.g., Carey and Walker 1986a).

Cosmic sources include comets and asteroids as well as interstellar grains. In the last twenty years,

man-made debris in Earth orbit has become a major contributor to the local flux of dust particles,

creating both a hazard for spacecraft and an error signal in studies of the properties of the "natural"

dust. This subsection summarizes the properties of the dust from different origins, including the
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man-made particles. Trajectory determination and possible differentiation among the origins is then

described briefly. Finally, estimates are made of the properties of a Doppler lidar system needed to

measure the particle trajectories and the laser frequency stability needed to make the measurements.

6.2.5a Particle origins and properties

Since the orbital parameters of several major meteor streams match very closely those of observed

comets (Kreskk 1980), there are clear parent-daughter orbital relationships between some meteoroids

and the comets they derive from. It is commonly held that comets consist in part of interstellar

material that originally existed in the solar nebula. Arguments based on mass balance (Whipple

1978) and analysis of the orbital parameters obtained from photographic data on meteors (Jacchia

and Whipple 1961) support the view that much of the interplanetary dust comes from comets.

Laboratory measurement of IDP collected from Earth's stratosphere shows substantial enrichment

of deuterium and hydrogen relative to other solar-system materials in about 60% of the collected

particles, thus supporting the view of their earlier origin; and midinfrared absorption spectra on

some IDP show strong similarities to infrared sources thought to be protostars (McKeegan, et al.

1985).

Radar studies (Sekanina 1973) have also indicated asteroids as the parent bodies for some

meteoroids. Dust bands observed with the Infrared Astronomical Satellite suggest that asteroids are

sources of a significant fraction of the IDP. Some fraction of the IDP likely is interstellar dust that

has penetrated the inner solar system. Calculations indicate that such particles would be on the

order of 10 pm or larger in size (Morrill and Griin 1979). However, no measurements of the orbital

parameters of particles in the 10-pm size range have ever been made. (Photographic and radar

measurements are limited to much larger particles.) Until measurements are made of the orbital

parameters of particles in the 10-pm size range, it is not possible to rule out the possibility that

a significant fraction of the IDP is interstellar material. Nevertheless, recent calculations based on
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estimatesof thegasdensityand gas-to-dust ratio of the local interstellar medium suggest that at

most 1% of the dust flux in the 1 to 100 pm size range is interstellar (Sandford 1985).

A capture apparatus in Earth orbit, such as the Cosmic Dust Collection Facility proposed

recently for the Space Station Freedom (see e.g., Horz 1986), will encounter these particles as well

as man-made debris (paint flecks, for example). Figure 26 is a graph (due to Kessler 1985) of the

observed flux of natural objects (meteoroids) and man-made orbital debris as a function of particle

size. At any one time, there is an estimated 200 kg worth of meteoroid material moving through

Earth's atmosphere at altitudes below 2000 km, at an average speed of about 20 km/s. Most of the

mass is found in particles of about 100 pm diameter (Zook, et ai. 1970). Man-made particulates, such

as rocket-exhaust products and collisional or explosive fragments of spacecraft, form an increasing

fraction of the "dust" particles encountered in Earth orbit and are a growing concern for manned and

unmanned orbiting structures. Particles with diameters between 100 pm and about 10 mm make

up the primary collisional hazard, since smaller particles can be shielded against and larger particles

are infrequent. It is estimated that the total mass of debris in orbit is now approximately 2 x 106 kg

at altitudes below 2000 km (Kessler 1986). The average relative velocity of the debris particles is

only 10 km/s, about half that of the meteoroids; and most of the debris mass is found in objects

several meters in diameter, as opposed to 100 pm for meteoroids. Due to explosions, collisions,

deterioration, and rocket-motor firings, it is expected that a large amount of material in the 100-pm

to 10-mm range has been generated from this orbital debris. Discrimination between "natural" and

man-made particles is achieved primarily through collection and subsequent compositional study.

Ongoing detailed examination and analysis of pieces of the Solar-Max satellite suggest that there

may be twice as many orbital debris impacts as meteoroid impacts, and that there likely are billions

of 100-pm debris particles in Earth orbit.
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6.2.5b Trajectory information

Information from chemical, isotopic, and other analyses alone is inadequate to provide insight into the

composition and evolution of the parent bodies and particularly to distinguish between comets and

asteroids as parent bodies. Even particles known to come from comets (because of their association

with particular meteor showers) differ substantially in character from comet to comet. Measurement

of the orbital parameters of specific dust particles is essential to correlate physical characteristics

with specific sources, and to answer questions about the diversity of particles of cometary origin

that could not be answered, for example, by sample-return missions to single comets.

Unfortunately, dust grains seldom travel in orbits identical to their parent bodies. Grains emit-

ted from a comet are emitted in a variety of directions, due to the outflowing gas. Grains emitted

from asteroids as a result of meteoroid impact also are ejected with a variety of velocities. Solar radi-

ation pressure decreases the effective gravitational pull felt by the small grains and leads to increased

orbital periods and semimajor axes relative to those of the larger grains; Poynting-Robertson drag

gradually shrinks these orbits again (Zook 1986). Different gravitational perturbations, added to the

Poynting-Robertson drag, cause increasing divergence among orbital parameters of the parent body,

the larger grains, and the smaller grains. The change in orbital parameters depends strongly on par-

ticle size and on the time since separation from the parent body. These orbital evolution processes

are topics of detailed theoretical investigations, for their understanding is essential to identification

of collected meteoroids with specific source bodies or types thereof. Because it is not known even

what percentage of the smaller dust particles are associated uniquely with a specific object or even

a general class of objects, it is considered important that in situ determinations of orbital elements

be made to the highest precision possible.

A system to measure the desired trajectory information must be capable of measuring relative

velocities in the range of 10 to 100 km/s for a wide range of particle sizes, from about 10 microns to

,v1 meter. Studies indicate the velocity components of impacting meteoroids must be measured to
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a precision better than 1% in order to enable separation of objects from asteroids and from comets.

A similar level of measurement precision is necessary to distinguish different populations of Earth-

orbiting spacecraft debris from each other and to determine their sources, e.g., whether they are

lunar ejecta or man-made Earth-orbiting debris generated in geosynchronous transfer orbits (Kessler

1985, 1986; Alexander and Corbin 1980). Photographic meteor trajectories can be obtained with

accuracies of 0.1% to 0.4_ (Jacchia and Whipple 1961; Knollenberg 1981). The situation for smaller

meteoroids, at present, is not nearly as good.

Any system to measure trajectories of dust particles must be capable of reliable, autonomous

operation for periods of a year or longer in order to obtain statistically significant results. Further,

because of the small flux of particles, collecting areas must be at least as large as 1 m 2 (Carey and

Walker 1986a,b). Several different techniques have been considered seriously for making velocity

measurements on dust grains. One uses a grid of wires in which an electrical signal is induced when

a charged particle passes; several grids of wires, spaced about 10 cm from each other, are used to

determine the position coordinates of a particle at two different crossing planes separated by ,,_ 10 cm

(Auer 1975). Another approach uses a thin metal foil at the top of a capture cell. Here a particle's

arrival causes a plasma pulse on a system of grids just below the top foil; time of flight is recorded

as the particle is detected again at a second foil followed by a second system of grids (Carey and

Walker 1986b). Acoustic sensors are a third possibility; use of several sensors and measurement of

arrival times would enable trajectory determination. A fourth possibility, examined below, is the

use of coherent Doppler lidar.
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6.2.5cDoppler lidar systemrequirements

Usingthe analysis presented in section 4.2.2 of this report, one can assess the utility of coherent

Doppler lidar for obtaining trajectory information on dust particles in Earth's atmosphere (and, by

extension, in other environments). Assume an average velocity of 10 to 20 km/s for the particles

(typically 10 km/s for orbital debris, 20 km/s for natural objects), with a spread O'med '_ 3 km/s.

With the low fluxes indicated in Figure 26, the scattering cross sections, either forward or backward,

are likely to be extremely small; therefore the measurement accuracy most likely would be limited

by photon statistics. Assume, therefore, that the beam width, detector area, pulse duration, and

integration time have values such that at least one scattered photon is detected in a single mea-

surement integration time. At the impact rates of 1000/m_-yr for 1 to 10 pm-diarneter particles

indicated in Figure 26, detector collecting areas should be on the order of 100 m s if integration times

are on the order of 5 to 10 minutes. One can then calculate the relative magnitudes of the terms in

eqs. (4.2.17) for the velocity measurement precision and get a rough idea of how well this technique

might work.

Assume, for illustration, laser pulses of duration 1 ps and spectral width 6Vbw --_ 3 MHz, at

an operating wavelength of about 1 pm. Note that these pulse spectral widths imply a modest

fractional frequency stability (of order 10 -s) for the reference laser that generates the pulses and

serves as a local oscillator for heterodyne detection of the returning pulses. The range resolution

_L ---- crp/2 __ 150 m. Ignoring the error due to photon statistics for the moment, consider the

contribution to velocity-measurement error from the quantity A defined in eqs. (4.2.17). With

the numbers assumed above, this contribution is on the order of 63 m/s, dominated by the effect

of the velocity spread of the particles. (In the language of section 4.2.1, O'v,bw _'_ 1.5 m/s and

_,med --_ 63 m/s.) If no bandwidth-reduction techniques were used, the sampling frequency required

in order to be sensitive to maximum velocities of about 25 km/s would be f __ 50 GHz [eq. (4.2.15)].

Assume here that the detection process uses a bank of approxirn_tely 1000 spectral filters, so that
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the effective sampling frequency associated with each filter is only 50 MHz. Then the quantity

that contributes to measurement error through the term B in eqs. (4.2.17) is of order 100, and the

contribution to measurement error from term B (assuming a single detected photon per integration

time) is about 190 m/s. The contribution from term C is only about 0.75 m/s. The total velocity-

measurement error is therefore approximately 200 m/s, or 1 to 2% of the average particle velocity for

meteoroids and orbital debris, respectively. If the reference-laser fractional frequency stability were

improved to 10 -l°, so that the pulse spectral widths were only about 30 kHz, and pulse durations

of about 10 ps were used, the final velocity-measurement precision would be approximately 35 m/s,

or 0.2 to 0.4_ of the average particle velocity, and the range resolution would be on the order of

1.5 km. Thus, provided adequate collector areas and detector sensitivity are employed to ensure

a minimum of one detected scattered photon per integration time, coherent pulsed Doppler lidar

techniques might be useful in obtaining precise trajectory information.

6.2.6 Solar studies

In the early 1980s, serious study was given to a proposed mission called "Starprobe," which would

send a spacecraft on a trajectory over the pole of the Sun to a perihelion distance of approximately

four solar radii (Underwood and Randolph 1982). With both S- and X-band capabilities on such a

spacecraft, numerous scientific experiments could be carried out, including studies of the Sun (e.g.,

its mass moments, density distribution, shape and dimensions, surface composition, and luminosity),

studies of energetic particle and plasma phenomena, and relativity experiments and other tests of

gravitation theories. Many solar studies seek to characterize the solar wind and solar corona, as

well as interplanetary turbulence (e.g., Woo 1978; Volland, et al. 1977; Tyler, et al. 1977; Winn, et

al. 1977). This information is obtained through measurement of the differential effect of the solar

plasma on the group delay of radio waves at two different wavelengths. As noted earlier, this kind of

information clearly cannot be obtained with laser beams alone, since optical-frequency radiation is

relatively unaffected by passage through plasma. However, simultaneous transmission of light waves
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withdual-frequencyradiowavescouldimprovethecalibrationof plasmaeffects,andthusenhance

theinformationgainedfromradioexperiments.

A variety of measurements related to the mass, shape, and gravity field of the Sun could be

aided significantly with the addition of laser links to solar spacecraft. This is because virtually all

of these measurements rely on precise tracking of a spacecraft as it nears the Sun, ideally as near

as four solar radii ('_ 1° as viewed from Earth vicinity). Dual-frequency S- and X-band links likely

would not be able to provide the desired measurement accuracy. Even if plasma effects were small

and the transponder turnaround ratios identical for the two bands, only first-order effects (plasma

effects that scale with the square of the frequency, but not those that scale with the fourth power)

would be cancelled. In practice, even first-order cancellation is imperfect. Coronal scintillation

causes the ground-receiver's phase-locked loops to lose lock intermittently, and dissimilar transponder

turnaround ratios result in imperfect cancellation of the plasma-induced phase delay. Ideally, of

course, the turnaround ratios would be made identical. In practice, this is not always possible; at the

time Starprobe was being considered, expected transponder turnaround ratios were 240/221 = 1.085

for S band and 880/749 = 1.175 for X band (Underwood and Randolph 1982). With improved

calibration of the plasma effects through use of a laser link, high accuracy could be maintained

despite cycle slips at S band for a spacecraft in close proximity to the Sun.

The remainder of this section concentrates on measurements of harmonics of the solar gravity

field. Other measurements that are of primary interest for testing general relativity and other

theories of gravitation are discussed in section 6.2.6 below. A very important scientific objective of

a solar mission is to determine the quadrupole moment (J2) of the solar gravity field. This would

provide information about the state of rotation of the solar interior, particularly the core, which in

turn could provide insight into star formation by indicating how angular momentum was distributed

among the Sun and the planets, as well as improve estimates of the solar mass distribution and the

Sun's total angular momentum J. When combined with measurements of surface rotation, which

205



couldbeconsiderablyslower than the core's rotation rate, knowledge of J2 would shed light on

possible mechanisms for slowing of the rotation rate (such as magnetic braking due to the solar

wind) and their possible connection to the surface activity seen in middle-aged stars such as the

Sun. If the value of J_ is found to be large enough that strong differential rotation is likely, a

variety of mixing mechanisms become possible, all of which lead to predictions for such observables

as neutrino flux that differ substantially from the "canonical" theories of star formation that assume

no mixing of envelope material into the core. Measurement of the J2-axis orientation also would be

of significant value for understanding the solar magnetic field. If the Sun has a large, centered, dipole

magnetic field whose axis is aligned with the solar rotation axis, then distortion of the gravitational

potential induced by the magnetic field would be indistinguishable from that caused by rotation.

However, if the J2 axis is displaced from the rotation axis, as it is expected to be, a magnetic dipole

field then could be inferred (Underwood and Randolph 1982). Finally, accurate measurement of 22

would remove the solar oblateness as a source of error in solar-system tests of gravitation theories.

Measurement of J2 would be accomplished through the analysis of remote spacecraft track-

ing data. Frequency-stabilized laser technology would be required because coherent (heterodyne-

detection) links, as opposed to incoherent or direct-detection links, are necessary (1) to provide

adequate filtering of the sunlight when the spacecraft is within a few degrees of the Sun, and (2) to

provide highly accurate range and velocity information. The angular motion of the spacecraft could

be tracked both at radio frequencies, e.g., with very-long-baseline interferometry or differenced-range

techniques, and at optical frequencies with filled-aperture or interferometric optical astrometric tech-

niques.

Analyses suggest that a Doppler velocity-measurement accuracy of 0.1 mm/s would be required

to infer J2 to an accuracy of 2 x 10 -s, or approximately 10% of its estimated value [see Figure 27 and

Anderson 1988, and Meuse, et al. 1984]. For measurement integration times of about 60 seconds,

this would require oscillator fractional frequency stabilities of about 3 x 10 -14 over periods at least
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aslongasseveral hours, corresponding to stable line widths of about 10 Hz at laser wavelengths

(A _ 1 /tm) or 300/tHz at X-band [eq. (4.2.9c)]. A drag-free system accurate to 10-1°g also would

be required to reach this accuracy for J2, although compensation to only 10-gg still would give

an accuracy of approximately 3 x 10 -s in d2. Compensation to 10-1°g corresponds to a reduction

by a factor of about 105 in the nongravitational accelerations experienced by a spacecraft in the

proximity of the Sun. These numbers have assumed that the error in the drag-free system comes

primarily from the zero-frequency (DC) component; if instead the drag-free system has significant

noise components in the 10 -4 Hz range, the accuracy would be worse than indicated here (Anderson

1988). Implications of this accuracy for tests of general relativity are noted in section 6.2.7.

With the kind of precise tracking capability enabled by a combination of dual-frequency mi-

crowave links and a coherent optical link to a solar spacecraft, other measurements somewhat more

demanding than the measurement of J2 could be considered. For example, the next rotational mo-

ment, J4, might be determined. For a uniformly rotating Sun Jz - 0, and J4 _ J22 (dimensionless

units). Studies indicate that for a differentially rotating Sun, J4 could be considerably larger than

J22, perhaps as large as 0.1J_ (Ulrich and Hawkins 1981). Other even zonal harmonics, especially

J6, also may be large for a differentially rotating Sun. However, even if J6 were as large as 0.01J2

(__ 2 × 10-9), it probably would require finer measurement accuracy than indicated in Figure 27 for

definitive measurements to be made. The time variation of J2 also may be accessible with track-

ing accuracies of 0.1 mm/s or better. It is estimated that ,/2 has a sinusoidally varying term with

amplitude of order 7 × 10 -8 (Christensen-Dalsgaard and Gough 1980), which arises from observed

160-minute oscillations of the Sun (presumably of acoustic and gravity-wave origin). Comparison of

the amplitudes of optical and gravitational oscillations, the latter inferred from J2 measurements,

would give valuable information about the Sun's internal structure. Finally, the Sun's total angular

momentum may be inferred from measurement (by means of precise tracking) of a general relativistic

effect known as "inertial-frame dragging," described in section 6.2.7.
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6.2.7Testsof generalrelativity and gravitation theories

Gravitationis the weakest of the four fundamental interactions in nature, and the most difficult

to study experimentally. But because it acts over very long ranges and couples to inertial mass, it

dominates the large-scale structure of the universe. Measurements of relativistic gravitational effects

are of profound importance for furthering an understanding of this most basic interaction, and for

understanding physical properties of the strong gravitational fields associated with astrophysical

sources and their implications for cosmology. Several relativistic theories of gravitation exist, in

addition to general relativity, that are consistent with the limited experimental results currently

available. Discrimination among the theories is difficult because of the relative weakness of the

different predicted effects on observable scales. While it is possible that the failure of one or more

of these theories may be apparent only on cosmological or subatomic scales, at present the most

effective experiments that can be performed are on solar-system scales.

To date, the correctness of general relativity and other gravitation theories over the Newtonian

theory of gravity has been tested only in the weak-field limit, and to at best about 0.2% accuracy.

The advent of ultrastable oscillators, microwave and optical, enables more accurate measurements

than previously possible for many classic tests of relativistic gravitation theories, some of which are

described below. In order to compare the various theories with experiments made on a solar-system

scale and with Newtonian predictions, a parametrized formalism has been developed, called the

Parameterized Post-Newtonian, or PPN, formalism (see Misner, et al. 1973). This formalism is

valid only in the weak-field limit, where the dimensionless gravitational potential ¢ _= GM/rc 2 is

smaller than the solar poential GMo/R_c _ __ 2 x 10 -6, and velocities are nonrelativistic, v<cv/"$. *

In this formalism, terms are grouped according to combined powers of ¢, or M, and v s. First-order

terms give the predictions of Newtonian theory, second-order terms are called post-Newtonian,

* The symbol ® refers to quantities for the Sun; M denotes mass and R the radius of an equivalent

uniform, spherical body, and G is the universal gravitational constant __ 6.7 x 10 -11 m3/kg-s 2.
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andhigher-ordertermsareneglected.(Post-post-Newtonianformalismsalsoexist, which take into

account higher-order terms.) The PPN formalism has 10 parameters in all; this discussion will be

limited to six. Their physical significance for a particular metric theory of gravitation lies in the roles

they play in the part of the metric that describes the deviations of the local space-time curvature

from Euclidean flat space.

To understand the roles played by the other PPN parameters, it is helpful to see where they

appear in the metric. The flat-space four-dimensional metric r/#v (#, v take on values 0, 1, 2, or 3,

corresponding to the time and three spatial components, respectively) is diagonal, with components

r/00 - -1 and 0ij - dfij, where i, j = 1, 2, or 3 _ij is the Kronecker delta (6ij = 1 for i=j, $ij = 0 for

iej). The space-time metric g,_ at a distance r and angular position 8 from a spherical object of

mass M, physical radius R, angular momentum f (whose direction defines 0 = 0), and quadrupole

moment J2, is given by g#_ = r/_ + h_, where ho_ has the following nonzero components, up to

h00 = 2aA:/ l-J2 P2(cos0) -2/_ •-7- -7

h0j = -( al + a2) J×_.Z. (8.2.1)
8 r3 '

hij = gij{7"_[1-J,(r ) P,(cosO)] + 2 , r) .

Here the normalized mass h_/ has units of length (e.g., for the Sun, GMo/c 2 =_ M o __ 1.48 km);

P2(x) - (3x 2 - 1)/2 is the second-order Legendre polynomial; and X represents terms that vanish

in the theory of general relativity but in other theories depend on the object's baryon density,

pressure, and specific internal energy density (Misner, et al. 1973). The parameter a is equal to

unity for all metric theories of gravitation, by virtue of the empirical definition of the unit of mass

and the gravitational constant; in practice, a is sometimes retained as a parameter that describes the

gravitational redshift. The parameter 7, which appears in the diagonal spatial components of the

metric multiplied by the gravitational potential _l/r, is the first-order non-Euclidean contribution
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to spatial curvature. The parameters/3 and A describe second-order contributions to the time and

spatial components of the metric, respectively; they appear in the purely temporal and purely spatial

components of the metric multiplied by (/f//r) 2. The parameters A1 and A2 are responsible for

an effect known as the "dragging of inertial frames;" they appear in the off-diagonal time-spatial

components of the metric multiplied by the angular momentum f of the effective mass producing

the local gravitational field. In the metric theory of general relativity, all of these parameters take

on the value unity.

Before discussing particular experiments and their significance, a few general comments are in

order about technology requirements for solar-system tests of relativistic gravitation theories. Pre-

cision tracking of solar-system spacecraft is essential. Desired capabilities include ranging accuracy

of a few centimeters or better, range-rate accuracy of 0.1 mm/s or better, and angular accuracy to a

milliarcsecond or better. These levels of accuracy require that the spacecraft (or test masses within

the spacecraft) be kept relatively drag-free by use of active disturbance compensation systems (see

discussions in sections 3.4.5, 5.2, and 5.3). Alternatively, planetary landers should be used. The

buffeting of solar-orbiting spacecraft by nongravitational forces (solar-wind intensity fluctuations,

for example), if uncompensated, would degrade the accuracies by up to four-to-five orders of magni-

tude. For example, a spacecraft in the vicinity of the Sun (such as the Starprobe mission mentioned

in section 6.2.5) would experience nongravitational accelerations on the order of 10-5g, or about

10 -4 m/sL The fluctuations associated with these nongravitational accelerations must be reduced

to an effective level of 10-1°g or smaller over time intervals on the order of a minute in order to

enable meaningful tests of gravitational theories. Planetary orbiters are better, in that their non-

gravitational accelerations are small, and their orbits can be calibrated frequently. Landers offer

the best stability, particularly if they are used for measurements spanning several years. Several

significant tests of post-Newtonian gravitation theories could be performed with precise ranging to

orbiters or landers on Mercury or Mars, for example, including tests of the principle of equivalence,

deflection of light by the Sun's gravitational field, post.Newtonian effects on the orbital motions of
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planets, a possible time variation of the gravitational constant G, and others, some of which are

described below.

Brief descriptions follow of several proposed tests of gravitation theories that would benefit from

the use of coherent laser links and frequency-stabilized laser technology with planetary spacecraft.

6.2.7a Advance of the perihelion of Mercury

This classic test of general relativity, originally proposed by Einstein, measures the secular advance

of the perihelion of Mercury's orbit (approximately 43 seconds of arc per century). The predicted

advance _i_M (in radians per revolution) depends on the PPN parameters/3 and 7, and the solar

quadrupole moment J2, as follows:

6_bM- 6_'J_/Q [2(1+7)--/3 P_2_O1p 3 + J_ ' (6.2.2)

where p =_ a(1 - e _) is the semilatus rectum of Mercury's orbit, the parameters/3 and 7 are defined

above, R O _ 7 × 105 km, and )t_/_) - GMo/c 2 __ 1.48 km. The term dependent on the Sun's

quadrupole moment J2 is not a relativistic gravitational effect; it is a Newtonian effect on Mercury's

orbit arising from the Sun's asphericity. If the contribution of J2 is negligible, measurements of the

perihelion advance indicate that the term (2 % 2"), -/3)/3 - 1 4- 0.005, in agreement with general

relativity to 0.5 (Shapiro, d al. 1976). However, uncertainty in J_ leaves open the possibility of

disagreement with general relativity. Accurate measurement of the Sun's J2 and of its total angular

momentum J also have great importance to solar and stellar physics, as indicated in section 6.2.5.

Placement of an orbiting satellite around Mercury has been proposed (to provide a means

of testing several aspects of general relativity and other gravitation theories (Bender 1988). These

include (1) measurements of the perihelion precession and of the predicted relativistic time-delay (see

below) that would be two orders of magnitude more accurate than currently known; (2) measurement
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of thesolarquadrupole moment J2 to an accuracy of 10-9; and (3) determination of the rate of

change of the quantity GM® to an accuracy of lO-14/yr [see Bender, et al. (1989), Vincent and

Bender (1990), and Ashby, et al. (1991) for more complete enumerations and descriptions]. These

results require ranging accuracies of approximately 3 cm (Bender 1988, Vincent and Bender 1989)

and Doppler measurement accuracies for 10-minute observation times of about 10-14. This proposed

mission would use dual-frequency (X- and K-band) two-way microwave links. Addition of a coherent

laser link could be an important aid in calibrating effects of Earth's ionosphere and atmosphere. And,

if a stable laser transmitter and transponder of comparable fractional frequency stability (10 -14)

could be included on the orbiter, optical tracking measurements could constitute significant tests of

their own, in addition to verifying measurements made with the radio links.

6.2.7b Relativistic time-delay and light-deflection experiments

General relativity and other theories of gravitation predict that electromagnetic signals passing near

a massive object will be pulled slightly from their trajectory, resulting in an observed time delay and

ray deflection analogous to what would be produced by passage through a refractive "atmosphere"

surrounding the massive object, with refractivity pg -- 2M/r at distance r from the massive object.

These effects can be measured best with spacecraft at conjunction with the Sun. The relativistic

contribution to the time delay Atd measured at Earth depends on the PPN parameter 7 as follows

(Misner, et al. 1973):

Aid = 2GMo/c a (1 + 7) In( (1 q" cos0e) (1 4- cos0,)_sin0 e s'in0: ']'
(6.2.3)

where 0_ is the angle subtended at Earth between the Sun and the spacecraft, 0, is the angle

subtended at the spacecraft between the Sun and Earth, and '_n" denotes the natural logarithm.

This time delay can be as large as 250 ps for signals that just graze the solar limb (sin 0_ __ sin 0, _
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R®/1 AU _ 0.0047). Measurements made by radio-tracking of the Mariner spacecraft gave results

consistent with general relativity to within the estimated errors, about 2% (Anderson, et al. 1975),

and more recent measurements with the Viking landers on Mars indicate agreement with general

relativity to an estimated uncertainty of 0.2% (Shapiro, et al. 1977, Reasenberg, et al. 1979). This

small uncertainty was enabled by a ranging accuracy of a few meters, made possible by combining

range measurements to the lander with range measurements to one of the Viking orbiters, which

had X-band as well as S-band downlink capability.

The deflection of light due to passage near the Sun has been measured with radio-frequency

Very Long Baseline Interferometry (VLBI), in which the relative angular position of two quasars was

monitored as one of them passed behind the Sun. These measurements have confirmed that the PPN

parameter 3' is equal to 1 to within 2% (Fomalont and Sramek 1976, 1977). Accuracy was limited by

plasma effects in the solar corona and Earth ionosphere, as well as atmospheric effects. The deflection

due to first-order effects (the parameter 7) is about 1.75 arcseconds for light just grazing the Sun (see,

for example, Misner, et al. 1973). As shown in Figure 28, a microarcsecond astrometric capability

opens up the possibility of measuring second-order effects, as well as the predicted "dragging of

inertial frames" due to the Sun's total angular momentum _ Space-based optical interferometers

(see discussion in section 5.1), relying on sophisticated laser metrology systems and stable materials

and mechanical design, are expected to be capable of such measurements. In the future, light-

deflection experiments performed with coherent links to spacecraft carrying frequency-stabilized

lasers might provide even more sensitive tests of these subtle effects. As noted several times already,

the immunity of the laser links to plasma effects offers a significant advantage, which for this kind

of experiment could make up for difficulties associated with optical tracking close to the Sun.
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6.2.7c Tests of the principle of equivalence

A third test of general relativity originally proposed by Einstein (after the precession of Mercury's

orbit and light deflection by the Sun) is the gravitational redshift of light, which actually is a test of

the principle of equivalence and as such applies to all relativistic theories of gravitation. According

to this prediction, a clock at a higher gravitational potential (e.g., nearer a massive body) should

run more slowly than one at a lower gravitational potential. Thus, signals transmitted from a

stable oscillator with frequency u that are received in a region of lower gravitational potential will

appear Doppler-shifted by an amount 6gig = o_Aq_/e 2, where A_b is the difference in gravitational

potential, and the PPN parameter _ -- 1 for all metric theories. This is a necessary consequence

of the equivalence principle, which asserts that all forms of mass and energy are equivalent in

producing a gravitational acceleration, and that this gravitational acceleration is indistinguishable

from a mechanical acceleration (equivalence of gravitational and inertial mass). The first reliable

measurement of this effect was by Pound and Snider (1965) using the Mossbauer effect; they reported

a 1% uncertainty in their measurement of the redshift of photons falling 20 meters in the Earth's

gravity field. A measurement of the combined effects of the relativistic second-order Doppler shift

(time dilation, predicted by special relativity) and the gravitational redshift was accomplished by

Vessot, et al. (1980), by comparing a hydrogen maser on board a spacecraft in suborbital trajectory

at 10,000-km altitude ("Gravity Probe A") with a counterpart on the ground, using multilink radio-

frequency Doppler tracking and communications. A separate two-way coherent radio link was used

to calibrate the Doppler shift and atmospheric and ionospheric effects, which were then subtracted

from measurements of the received signal frequency. With this cancellation scheme, accuracy in

comparison of the frequencies was shown to be on the order of 10 -14 for 100-second integration

times. Agreement with the predictions of general relativity was obtained with an uncertainty of

7 x 10 -5. It has been estimated (Vessot 1984) that a direct measurement of the gravitational

redshift to second order in the solar mass i.e., to 10 -9 (nearly five orders of magnitude more sensitive
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thanthecurrentbestmeasurements),couldbemadewithahydrogen maser exhibiting a fractional

frequency stability on the order of 10 -14 or better over several hours. This maser would be placed

on a spacecraft passing near the Sun. Use of a coherent laser link could aid in calibrating the

plasma effects sufficiently to reach the desired measurement accuracy; and, if the onboaxd laser had

a fractional frequency stability comparable to that of the hydrogen maser, the test could be made

both more definitive, and, perhaps, more precise.

Violations of the equivalence principle should show up as measurable anomalies in the orbital

motions of planets and satellites. Lunar laser ranging has been used to test this, by looking for

changes in the Earth-moon separation that would result if the mass equivalent of the gravitational

binding energy of the Earth-moon system in the Sun's gravitational field does not behave like ordi-

nary mass (Williams, et al. 1976; Shapiro, el al. 1976). Specifically, the laser-ranging experiments

can be shown to constitute a measurement of the quantity r/= 4f_ - 7 - 3 (Vessot 1984). A de-

tailed description of these measurements and the variety of relativistic effects that can be tested

can be found in Alley (1983). The discrepancy between the prediction of general relativity and the

measured value was found to be zero to within the measurement uncertainty of 2%. Recent gal-

culations (Nordtvedt 1988) indicate that laser-ranging experiments to the moon and to the Lageos

satellite have in fact provided some verification (by virtue of an absence of predicted anomalous

motion) of "gravitomagnetic," or frame-dragging, effects predicted by general relativity. The lunar

laser-ranging measurements use fast electronic circuits capable of subnanosecond timing, and axe

accurate to about 30 cm. Their accuracy has resulted to a great extent from the short, high-energy

pulses available from lasers and the capability for sensitive single-photon detection. Use of laser

transponders on the lunar surface in place of the retroreflectors now used, which would improve the

signal-to-noise ratio (1/r 2 fall-off instead of 1/r 4 fall-off), could enhance the accuracy and broaden

considerably the implications for tests of gravitation theories. If the current visions of a lunar outpost

become a reality, one could imagine similar experiments performed with frequency-stabilized lasers

and coherent laser transponders. The implications for various tests of relativity and gravitation
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theoriescouldbe significant.

This section has barely touched on the ways in which frequency-stabilized lasers and coherent

laser links to or among planetary spacecraft could be used to test general relativity and other

fundamental theories. The subject is rich and ripe to be explored. Perhaps this report will help that

exploration come about.
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7. SUMMARY

This report has investigated aspects of frequency-stabilized lasers that are important for a variety

of scientific applications in space. Many error sources and frequency-stabilization issues have been

considered in chapters 2, 3, and 4. Chapter 2 examined the characterization of frequency stability

and some techniques for enhancing the stability. The impact of frequency stability on measurement

precision was investigated in chapter 3 and compared to other factors that limit measurement accu-

racy in a variety of circumstances. Techniques for making measurements with lasers were examined

in chapter 4.

Throughout chapters 2 through 4, heuristic derivations were used to motivate the dependence of

measurement precision on a variety of quantities. Rigorous derivations in all the aspects considered

were beyond the scope of this report; however, every attempt was made to make the simple, heuristic

arguments sound and complete. Many of the derivations were worked out specifically for this report

and do not appear in the literature, at least not in easily accessible form. When appropriate, errors

or omissions in the available publications were pointed out. The potential scientific applications have

been kept in mind throughout and have been cited where necessary to show the need for specific

levels of frequency stability.

Chapter 5 gave more detailed descriptions of several important applications of frequency-

stabilized lasers in space. Those applications include metrology for optical astrometric and imaging

interferometers, gravitational-wave detection, gravity-field mapping, atmospheric wind-sensing using

coherent pulsed lidar, and a variety of experiments involving the propagation of laser light through

planetary atmospheres and rings and scattering off planetary surfaces. These subsections drew

greatly on the general analyses done in the earlier chapters.

Chapter 6 outlined qualitatively some additional scientific applications of frequency-stabilized

lasers in space. Most of these applications could be investigated further by using the formalism
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developedinchapters3 and 4 and/or by extending in a straightforward way the analyses of specific

applications in chapter 5.

Clearly there is a wealth of scientific applications for space-qualified frequency-stabilized lasers.

Detection of low-frequency gravitational waves and high-resolution mapping of Earth's gravity field

are two examples of experiments that demand a high level of control or calibration of laser frequency

fluctuations. Other applications such as atmospheric wind-sensing and laser metrology systems for

microarcsecond astrometry and imaging with optical interferometers put more modest demands on

laser frequency stability. Table 7-1 summarizes the requirements on knowledge (control or, where

possible, calibration) of laser frequency fluctuations required to enable the scientific apphcations

discussed in this report. Further details and the same table are provided in the Executive Summary.

This report has provided some general background and a convenient framework for analyses of

the potential performance and science return of a variety of science experiments in space that use

stable oscillators and lasers in particular. The author hopes that it will help or encourage others to

expand and improve these analyses and perform new ones, in order to guide technology development

and the planning for future missions which someday may bring these and other science applications

to fruition.
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Figure 1. Three- and four-level systems of quantum states for a laser. No, N1, N2, and N3

represent the relative populations of the levels. In (la), the 3-2 transition is rapid (highly probable)

and nonradiative, and an inversion is established between 2 and 1 (N3 < N1 < N2). In (lb), the
2-1 transition is rapid and nonradiative, leaving an inversion between 3 and 2 (N2 < N3 < N1). In

(lc), the 3-2 transition is rapid and nonradiative, but a direct transition 2-0 is forbidden. Instead,
the metastable level 2 decays to 1, from which it returns rapidly and nonradiatively to 0. The

population N1 is negligible; hence the inversion between 2 and 1 can be reached more easily than in

a three-level system (Nx < Ns < N_ < No). Levels and 2 and 1 must both be relatively narrow.

222



(a)

P I N

ii
II

II

II
II

II
II

||

||

||

m

m

(b)

_ENERGY

P I N

I I

I I A A A A

I I
I I _ _ _

I I

I I

II

II

I I

I I

CONDUC,,TIVE
BAND

•, VALENCE
BAND

Figure 2. Two-level system for a semiconductor laser. Electrical pumping produces an inversion

at the P-N junction, where electrons in the conduction band and holes in the valence band come in

contact. Maintenance of the necessary electrical bias ensures a constant flow of electrons and holes

toward the junction.
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Figure 3. Energy levels for a gas laser with a mixture of two gases. Gas A is pumped to populate

level A2. Energy is transferred to gas B by inelastic collisions, bringing gas B to level B3. The
B3-B2 transition is rapid and nonradiative, producing an inversion between B2 and B1.
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Figure 4. Laser-diode-pumped Nd:YAG nonplanar ring oscillator (NPRO). Figure 4a is a schematic.
The output wavelength is 1.064 pm. Figure 4b is a spectrum-analyzer trace of the heterodyne beat
signal between two free-running diode-pumped Nd:YAG NPROs, showing a central peak at the 9-
MHz offset frequency and relaxation-osciUation sidebands. FWHM of the central peak is 3 kHz,
limited by the resolution bandwidth of the spectrum analyzer (from Kane, et al. 1987).
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Figure 5. Two common methods of active-feedback laser frequency stabilization. In (5a), a fraction

f of the laser light is directed to an optical frequency discriminator, whose error signal is amplified

and fed back to the laser. The laser's free-running frequency stability is affected by deterministic

technical noise (such as thermal or acoustic noise from the environment) and by internal, stochastic

noise. Performance of the optical frequency discriminator is affected by drift and fluctuations of

the center frequency of the cavity and by measurement noise within the feedback loop, such as the

random "shot" noise associated with photoelectron counting statistics. Figure 5b depicts a simple

"fringe-side" optical frequency discriminator (_om Hall 1986). See section 2.2.3 of text.
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Figure 6. Simplistic drawing of a single-arm laser interferometer, in which the relative phase is

monitored between light emitted from a reference laser at time t and light emitted from the laser a

time At = 2L/c earlier, the latter having travelled an additional distance 2L. Sources of error in

measurement of the optical path L (or 2L, as shown here) include fluctuations in the laser frequency

(6L,), photon statistics (6Lph), scattered light (&L,c), and fluctuations in the refractive index of the
optical medium (6L,). Errors that grow linearly with arm length L can be suppressed in a dual-arm

interferometer in which the arm lengths L1 and L2 are held nearly equal and the difference in arm

lengths, t _= L1 - L2, is the quantity measured. The fractional error caused by those error sources
is suppressed by the factor l/L, which may be of order 10 -3 or smaller in practice.
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Figure 7. Schematic of a dual-arm multireflection Michelson interferometer. (Only two round trips
are shown in the delay lines depicted here.) The reference laser beam is split in two at a 50-50 beam
splitter; the second input port of the beam splitter typically is unused, i.e., the field entering that
port is the vacuum field. The arms can also be operated as optical (Fabry-Perot) cavities, instead
of delay lines.
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Figure 8. Phase shift _b,c of main beam due to interference with scattered light of relative amplitude

e; see discussion in §3.4.2 (after Schnupp, et al. 1985).
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Figure 9. Graph showing the improvement in sensitivity with multiple reflections over a simple,

single-reflection Michelson. The graph plots the ratio of fractional measurement error _ _ 6L/L
for one reflection to that for n reflections off the end mirrors (n round trips), for various mirror
reflectivities R. See discussion in _4.1.2a [eqs. (4.1.1) and (4.1.2)].
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Figure 10. Schematics of optical configurations that could be used for resonant recycling of laser
light in (a) muitireflection Michelson interferometers and (b) optical-cavity interferometers. See
discussion in subsection 4.1.2c.
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Figure 11. Power recycling schemes for laser-interferometer gravitational-wave detectors, used

to increase the effective circulating laser power and thus drive down the photon-statistics liner to

measurement precision. See discussion in subsection 4.1.4b. Figure lla shows the technique with a

multireflection Micheison interferometer; Figure llb shows it with an optical-cavity interferometer.

Laser light bounces back and forth in the two arms and recombines at the beam splitter, after

passing through optional Pockels cells P1 and P2. (A gravitational-wave detector might drive P1

and P2 in antiphase at a modulation frequency high compared to the measurement frequency, for
example.) The optical path difference between the arms is controlled with feedback to maintain an

intensity minimum at photodetector D1. Output laser light from the other port of the beam splitter
(which exhibits an intensity maximum) is fed back coherently to reinforce the input laser light. The

laser frequency is adjusted for resonance by Pockels cell P3, which is controlled by feedback from

D2 (lla) or D2, D3, and D4 (llb). P4 is used to phase modulate the laser light, and the error

signal used to adjust the laser frequency is obtained by demodulating the output from D2. Near

resonance, considerable buildup of light flux can occur (from Drever, et al. 1983a).
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Figure 12. Two-way coherent range-rate (Doppler) measurement systems (see discussion in sec-

tion 4.2.1). In figure 12a, there is a stabilized laser transmitter and local-oscillator (LO) at spacecraft
1 and a phase- or frequency-matching laser transponder at spacecraft 2. In figure 12b, there are

stabilized laser transmitters and LOs at each spacecraft. In each case, the frequencies of the lasers

at the two spacecraft are offset from one another by at least the expected one-way Doppler shift. In

case (b), processing of the heterodyne beat-frequency measurements made on both spacecraft (vii1
and vii2) provides the functional equivalent of the two-way operation in (a). Both schemes benefit

from cancellation of low-frequency laser phase fluctuations, provided r/c < r¢oh-
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Figure 13. Schemstic of coherent Doppler lidsr system for real-time velocity and range measure-
merits on stochastic tsrgets. See discussion in section 4.2.2.
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Figure 14. Generic, simplifiedlasermetrology systems for astrometricand astronomical imaging

interferometers.(See discussionin section5.1.) The differencein path lengths travelledby the

signal(starlight,denoted by the solid,arrowed lines)to detectors1 and 2 isdetermined by precise

measurement of interferencefringesbetween the detector outputs. The angular spacing between

fringesis@ --A/L cosS,where L isthe baselineseparationbetween the detectors,A isthe wavelength

ofthe starlight,and _ isthe angle between the interferometerbaselineand the incoming wavefront.

In thisfigure,two lasermetrology interferometersaxe used to measure and controlthe relativepath

lengths.Light from laser1,whose path isindicatedwith open circles,isused to measure the baseline

between the two telescopes.Light from laser2 isused to monitor the average positionsofalloptical

elements encountered by the starlight(a simplisticrenditionof what is known as "full-aperture

rnetrology").This light,whose path isindicatedby filledcircles,isinjectedthrough the primary

beam splitter,tracesthe path of the input signalin the opposite direction(includingtransversalof

the delayline),and isrecombined with itselfatthe frontend ofthe system. Detailsofthe reflections

infrontof the primary mirrorsare not shown. A sophisticatedversionofthismetrology system has

been proposed for an orbitingastrometricopticalinterferometer("POINTS"); see Reasenberg, et

al.(1988) for discussionand a more detailedconfiguration.
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Figure 15. Lines of force associated with the two possible polarizations for gravitational waves

predicted by general relativity.
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Figure 16. Spectral densities of expected strain amplitudes for various astrophysical sources of

gravitational waves and sensitivities of different types of detectors. Figures 16a and 16b show

expected strains vs. frequency for periodic sources of gravitational waves; Figure 16a considers all

kinds of detectors, while Figure 16b considers only space-based long-baseline laser interferometers.

Figures 16c and 16d do the same, but for burst sources of gravitational waves. Figure 16e shows
expected strains vs. frequency for a stochastic background. Figures 16a, 16c, and 16e are adapted

from Thorne 1987: "beams" refer to laser-interferometric detectors, "LIGO" refers to ground-based

laser-interferometric detectors of the sort currently being developed by Caltech, MIT, and the Max-

Planck Institut, and "bars" refer to resonant-bar detectors such as those used by groups at Maryland,

Stanford, and Tokyo. Figures 16b and 16d are from Bender (private communication). The symbols

SN, BH, WD, and NS stand for supernova, black hole, white dwarf, and neutron star, respectively.

The symbol Egw is the energy radiated in the form of gravitational waves. In these figures M refers

to the mass of a black hole, and M® is the solar mass. In Figure 16e, the symbol f_gw represents the
ratio of the gravitational-wave energy (in the bandwidth of interest) to the energy required to close

the universe, assuming a Hubble constant H0 = 100 km s -1 Mpc -1. See section 5.2 and references
therein for further discussion.
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Figure 17. Space-based low-frequency laser-interferometer gravitational-wave detector. Figure 17a
depicts a possible laser-interferometer gravitational-wave detector between spacecraft in solar orbit
separated from one another by L ,-- 10 7 km. Figure 17b shows the noise spectral density, in terms
of strain sensitivity h _ 6t/L, for such an interferometer. (This instrument sensitivity also appears
superposed on Figures 16b and 16d.)
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Figure 18. Possible single-arm laser interferometer between coorbiting spacecraft for gravity-field
mapping (after Bender 1980 and Keating, et al. 1986). As discussed in text (see section 5.3),

performance could be improved considerably by adding a third spacecraft in the same orbit to form
a collinear dual-arm interferometer.
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Figure 19. Planet gravity-field mapping with Doppler measurements between co-orbiting space-

craft. Figure 19a is for a 160-km orbit altitude, and Figure 19b is for a 200-km altitude. For

comparison, the "1" curve for 200-km orbit altitude is also shown in Figure 19a as a dashed curve.

The curves labeled "1" show the maximum change in range rate between co-orbiting spacecraft in-

duced by passage over a 1-mgal anomaly in a planet's gravity field, as a function of spatial wavelength

)_t - 2rR/l. The curves labeled "2" and "3" show the required velocity-measurement accuracy (or

maximum tolerable measurement error) for detection of a 1-mgal anomaly with a single measure-

ment or with a combination of 106 measurements, respectively. Mapping resolution is defined as

_t/2. The integer I is the highest order of the terms in a spherical-harmonic expansion of the gravity

field; knowledge of the field to order l corresponds to knowledge of the (spatial) Fourier spectrum

down to wavelengths At. See discussion in section 5.3. For wavelengths shorter than about 100 km,

or resolutions smaller than about 50 km, the maximum change in range rate and maximum toler-

able velocity-measurement error decrease sharply, but their magnitudes are quite sensitive to orbit

altitude. For example, for 40-km resolution, the required accuracy with 106 1-second measurements

(curves "3") is approximately 3 nm/s for 160-km orbit altitude, a factor of e _ _ 25 less demanding

than the requirement at 200-km orbit altitude. For 20-km resolution, the required accuracy is about

4 fm/s at 160-km orbit altitude, which is a factor of e 2_r _'_ 535 less demanding than the requirement

at 200-kin orbit altitude. Other numerical values are given in Table 5.3.2.
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Figure 20. Geometry of (a) atmosphere- and (b) ring-occultation measurements. (a) The light
from transmitter (spacecraft) to receiver (Earth) is refracted by an angle ¢. Measurements of the

bending angle ¢ as a flmction of ray asymptote "miss distance" a are used to deduce a refractivity

profile p(h). If spherical symmetry exists, the refractivity #(h) is related to a and R + h, the closest.

distance of the refracted ray to the planet center, by Bouger's rule: p = a/(R + h). See discussion

in section 5.5.1. (b) Signals from a transmitter below the ring plane (z, y-plane) to a receiver above
the plane intercept the ring plane at points along the y-axis; for occultation near the equator, the

y-axis is a radial line from the planet center. The received signal consists of a direct ray, which

has passed through point O (corresponding to the central point of the antenna beamwidth) and
which is coherently phase-shifted with respect to the transmitted signal, and a scattered ray, which

comes from particles at various points P on the ring plane and which is incoherently (randomly)

phase-shifted with respect to the transmitted signal. The receiver is assumed far enough away from
the ring system that the rays r'or and r'_r from points O and P are essentially parallel. The distance

between the transmitter and the ring plane is D - I_ - _'ol _ I_ol; the ring opening 80 is the angle

between the ring plane and the vector _o. The direct ray is bent by an angle ¢ due to differential

refraction. Transmitter and particle velocities are v't and t7o __ _'p. See discussion in section 5.5.2.

248



(b)

Z RCVR

r

I
/ /

/
/ /

XMTR

Figure 20b.
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Figure 21. Spectral characteristics of the received signal during an occultation of a spacecraft by

planetary rings. See discussion in subsection 5.5.2a. The received signal consists of two components.

The first is a coherent, directly transmitted part (power Pcoh, frequency vc), attenuated in power by a

factor e -vo and possibly slightly shifted in frequency (Doppler shift up) and hence phase ($c) caused

by differential refraction through the rings. The frequency shift is exaggerated in this figure. The
second component is a Doppler-broadened incoherent part [power P6c, noise spectral density S(v)]

due to transmitted light that has been scattered into the receiver's line of sight by particles moving
with various velocities relative to the transmitting spacecraft and the receiver. The near-forward

scattering cross section tr is inferred from measurements of the spectral power in the incoherent

signal, while the complex extinction $c + irc/2 is inferred from measurements of the coherent signa].
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Figure 22. Complex extinction (opacity r -- rc sin O0 and phase shift ¢ - ¢c sin 80, where Oo is

the ring opening) for the coherent component of the received signal as a function of the ratio of

particle size to wavelength, a/A. See discussion in subsection 5.5.2a, especially eqs. (5.5.10-12). The

dimensionless quantity 7-o - 27ra2nc, where nc is the particle column density. The curves marked

"narrow" describe the situation when all particles are approximately the same size. (A spread in

sizes of about 5% was used in this figure, adapted from an analysis for S- and X- band wavelengths

by Marouf, el aL 1982.) The curves marked "3" and "4" describe situations where the distribution

of sizes obeys a power law p(a) oc a -q, with q -- 3 and q = 4, respectively for a in some range

(Omin, amax) with amax _ 30),. For these curves, the abscissa represents the ratio amin/),. The

flattening of the opacity curves for broader size distributions (smaller q) indicates a dominant effect

from particles larger than the wavelength. The solid curves assume lossless water-ice particles, while

the dashed curve is for (lossy) silicates. The difference in behavior between lossy particles and

lossless water-ice is most pronounced for particles much smaller than the wavelength (deep into the

Rayleigh scattering limit). In the geometric-optics limit, where a >> ),/27r, the phase shift vanishes,

and the opacity r __ r0.
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Figure 23. Geometry of the first Fresnel-zone ellipse relative to a ringlet of width 2W, not to

scale (adapted from Marouf, eIM. 1982). See discussion in subsection 5.5.2a. The transmitting

spacecraft is located out of the page, and the receiver is directly below the spacecraft (into the page).
This is the optimum geometry for achieving high resolution, with the semimajor axis of the ellipse

aligned with the rings, and the spacecraft motion and semiminor axis along the radial direction. For
ring widths W greater than the width (AD) 1/2 of the ellipse (D is the distance of the spacecraft

behind the planet center of mass) ray-bending effects are neglible, i.e., there is little or no focusing

or defocusing of the ray. At Saturn, with D __ 4 Saturn radii _ 240,000 kin, the resolution at

X band (3.6 cm) is about 6 kin, and at optical wavelengths (1 /_m) it could be on the order of

30 m. Individual contributions from isolated ringlets can also be isolated in the Doppler data from

the incoherent signal, although typically with poorer resolution (see Figure 24 and discussion in

subsection 5.5.2a).
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Figure 24. Doppler map showing contours of constant Doppler shift for a ring-occultation experi-

ment (adapted from figures in Marouf, el al. 1982 and Tyler 1987 describing Voyager 1 at Saturn).

(a) One of a series of Doppler contour maps created as a spacecraft moves radially behind the rings

of a planet, transmitting to a receiver in front of the rings. (b) Close-up of the illuminated por-

tion, showing optimum alignment of Doppler contours with arcs of constant radial distance. This

alignment permits straightforward reconstruction of the scattering cross section from the spectra of

the received signal, as well as identification of contributions from individual ringlets. The ellipses

correspond to the -3 and -10 dB antenna-gain contours.
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Figure 25. Bounds on detectable particle column densities and particle sizes as a function of
wavelength, for lossless (water-ice) particles with a very narrow distribution in size. See discussion
following eqs. (5.5.14-16) in subsection5.5.2a. Each curve represents a threshold for measurement
of the phase shift _ or opacity r from the coherent signal or of the forward-scattering cross section
from the incoherent signal. In the region above the curve labelled _b = 2r, the phase change is
at least one cycle; this curve does not extend beyond a/A ,,_ 0.1 because there is no phase shift
in the geometric-optics limit. The other solid-line curves bound the region in which the opacity
is small enough to ensure adequate received power but large enough to ensure that the extinction
caused by scattering through the rings can be distinguished from intensity fluctuations caused by
pointing jitter; here these bounds are taken to be 0.001 < r < 1. The opacity curves have different
slopes in the Rayleigh-scattering and the geometric-optics regimes [eqs. (5.5.10 and (5.5.11)]. The
dashed portions of each of these curves are approximations to the true curves for this intermediate
regime between Rayleigh scattering and geometric optics, which have been calculated for X-band
wavelengths by Marouf, et al. (1982). Numerical values for the column density corresponding to X-
band wavelengths (3.6 era) and optical wavelengths (1 pro) are on the left and right sides of the graph,
respectively. The lined region between the two opacity curves, labeled "A," is the region in which
scattering-induced amplitude changes in the coherent signal are detectable. In the double-hatched
region labeled "A, PII," both amplitude and phase information are accessible from the coherent
signal. The shaded region labeled "A, 1" is the regime in which the incoherent signal is detectable,
based on the requirement that the SNR in a 10-kIlz bandwidth exceed 6 dB for integration times
of 100 see; this requirement puts a lower bound on the measurable forward-scattering cross section
a(0), hence lower and upper bounds on measurable opacity as a function of particle size. In the
region labeled "I," the opacity is so small that only the incoherent signal is useful.
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Figure 26. The observed flux ill Earth orbit of natural objects, primarily meteoroids (solid curve),

compared with that of man-made debris, as measured by several different techniques. This graph is
taken from an article by Kessler, in llorz (1985). The flux of man-lnade debris is observed to exceed

that of meteoroids at both large and small masses (e.g., the SOLAR MAX data). (See discussion

in section 6.2.5.) Few observations exist for the millimeter-size range; however, extrapolations from
collisional and explosive fragmentation events indicate an abundance of these smaller particles.
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Figure 2"/'. Estimated accuracy of a determination of tile solar quadrupole moment J2 from Doppler
tracking of a spacecraft located approximately four solar radii (/_), or 1° (viewed from Earth), from
the Sun (from Anderson 1988). See discussion in §6.2.6. The solid curve shows the loss of accuracy
for a perihelion distance/?_ larger than about 4 Ro, for an orbit that is perpendicular to the ecliptic.
The dashed curve indicates little sensitivity to orbit inclination for a given periheli6n distance (4/?_,
in this case), which is consistent with the assumption that all multipole moments of the Sun's gravity
field except J2 are very small. The assumed Doppler accuracy of 0.1 mm/s refers to the one-sigma
accuracy of range-rate measurements taken at 60-sec intervals, assuming white noise during the solar
encounter. The goal of 1-2 x 10-s accuracy in J2 can be met only for a perihelion radius of order

4R_ or smaller and an inclination greater than about 70°.
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Light-deflection tests of general relativity (GR)
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• '7: Linear contribution to space curvature

• A, fl: 2nd-order contributions to space and time curvatures

• A1, A2: "Frame-dragging" effect due to angular momentum J

• GR:'7=AI=A2=A=fl=I

Figure 28. Angular measurement accuracy required for light-deflection tests of general relativ-

ity, using the Sun or Jupiter. Microarcsecond-accuracy astrometric measurements are required to
measure effects that are of second order in the solar potential M/R (dimensionless, i.e., defined as

GM/c2R, with G = 1 here). Note that M/R -_ 2 x 10 -6 for the Sun, roughly 100 times larger than

for Jupiter.
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8. APPENDIX. ESTIMATION THEORY FOR GRAVITY-FIELD MAPPING

Here, some simple aspects of estimation theory are described that were used to derive velocity errors

given in section 5.3.1. The mean-square uncertainty _q in a quantity q is related to the noise spectral

density Sq by

d2k S¢ (/_) (8.1)Oq 2 = _ '

where d2k =_ dkzdky denotes the two-dimensional Fourier surface element. In this discussion, q

will represent perturbations in the local average gravitational acceleration, _g, or in the local geoid

height, 5ng. The Fourier components of q are linearly related to the Fourier components of the

perturbations in the potential (dependences on k are suppressed):

= ], =k, ],, = ±. (S.2a)
go

Measured changes in the relative velocity v arise both from perturbations in the potential, which

have the signal of interest, _fi,, and from measurement error, _vm (for simplicity here, all other error

sources are either ignored or included in 6_,n as white noise, following Breakwell 1979) :

6fi = 6fi, + 6fi,n =-- H6Uo + 6_,,,. (8.2b)

The transfer function H(k), given by eq. (8.2b), relates signal-induced velocity perturbations 6v, to

perturbations 6/)0 in the surface potential.

Denote an estimate of q by q, assumed to be linearly related to changes in the relative velocity

of the spacecraft by some measurement transfer function ¢(k):

(8.3a)



The estimation error is

(8.3b)

The error spectral density for q is related to the spectral density of the surface potential fluctuations,

Suo, and the measurement error spectral density Sv. -= {]&_ml2) by

s, - (l&_l=) = I_,# - ]ql2suo + I_ql2 s_. (8.4)

(angle brackets denote an ensemble average). The function Cq that minimizes the error spectral

density Sq is the Fourier transform of the statistically best weighting of the measurements for

estimating q. With that optimal measurement transfer function, the error spectral density Sq takes

the form

Here

Sqo (8.5a)
Sq = 1 + &,/&. "

S,o - (IS_l2) = I]ql= Svo (8.5b)

is the spectral density corresponding to the a priori (without velocity measurements) knowledge of

the actual fluctuations in q;

&. - (16e,I2) = I#12SUo (8.5c)

is the spectral density of signal fluctuations in v due to perturbations in the potential, and

S.,. -- o_ 2 2_'2R2
Nm (8.5d)

is the measurement error spectral density. Here, the (white noise) measurement error spectral

density is taken to be the mean-square uncertainty (variance) of a single measurement of velocity, a_ _,

divided by the number of measurements per unit area, where Nm is the total number of measurements

and 21r2R 2 is the area of a Mercator enlargement of the Earth over which the measurements are
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essentiallyindependent of latitude. The error spectral density in an estimate of q, based on Nm

measurements of the relative velocity between spacecraft, is therefore*

(8.6)
J__q :

a_ 2 + Nm (27r2R2) -1 ([_,12)

In the limit that the second term in the denominator of eq. (8.6) dominates the first, the error

spectral density takes the form

a3 2r2R2 f d2k <1 +12> (8.7a)aq2 _- g"-_ (21r) 2 (1_+12) "

A minimum for this quantity can be obtained by taking the maximum value for the spectral density

of the signal fluctuations S_o (max) - (lS_0.,. l) [eqs. (5.3.7)]. This approximation also removes the

-2 equal to the Fourierangular dependence of the integral in eq. (8.7a). This defines a quantity crq,

component at harmonic order I of the mean-square uncertainty aq _ in an estimate of q, based on

measurements of v whose precision is av :

(16 12)
-2 = _" t . (8.7c)
% N=

This result is used to give the rrns velocity errors for gravity anomalies and geoid undulations in

section 5.3.3 [eqs. (5.3.8) and (5.3.9)].

* A note on dimensions: the velocity measurement precision a_ has units of velocity, but the

Fourier quantities are defined in units of wave number; hence the denominator of eq. (8.6) is dimen-

sionally consistent.
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